当前位置: X-MOL 学术Math. Geosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of a SAG Mill Energy System: Integrating Rock Hardness, Solar Irradiation, Climate Change, and Demand-Side Management
Mathematical Geosciences ( IF 2.6 ) Pub Date : 2019-07-01 , DOI: 10.1007/s11004-019-09816-6
Julian M. Ortiz , Willy Kracht , Giovanni Pamparana , Jannik Haas

Integration of renewable energy into mining and processing operations is becoming necessary as part of a strategy towards sustainability in the minerals industry. A solar photovoltaic plant along with a battery energy storage system (PV-BESS) can provide a long-term solution to cope with increasing energy costs, thus reducing the tension with other societal competing needs for a key resource such as clean energy. However, sizing these systems is challenging, in face of uncertain ore grindability and solar power availability. In this paper, we present an application of an integrated model to size the PV-BESS, where the variability of ore grindability is modeled using geostatistical tools, solar irradiance variability is captured using a Markov chain simulation model, and the entire system is optimized through linear stochastic optimization, considering a fixed mine schedule for the feed of a semiautogenous grinding (SAG) mill. The main goals are to minimize the costs associated with operating the SAG mill in the presence of a PV-BESS system, understand how the sizing and costs change under the influence of stochastic drivers, and reveal the potential for demand-side management in mines. The size and costs of the necessary infrastructure are determined for a model of estimated grindability and an ensemble of 50 simulated models of grindability, and compared against the sizing and cost of the ground truth. The effect of climate change on solar energy availability is accounted for by forecasting the ratio of excellent, good, and moderate days over bad days in terms of irradiance out to the year 2030. Finally, the effects of stockpiles and feed control according to the processing plant needs, namely a demand-side management approach, are evaluated to reveal the impact on the energy requirements and the sizing of the photovoltaic and storage system. The model is optimized considering a yearly cost function, with hourly resolution for the solar irradiance and hardness models. The results show that integrating solar power into the operation of a SAG mill has potential to reduce the total energy cost by 27%. Robustness against climate change can be achievedwith an increase in total cost of 1%. Finally, use of stockpiles to manage the ore supply to the mill and minimize the energy cost to process it results in a cost reduction of around 2%, which should offset the rehandling cost of managing the stockpiles.

中文翻译:

SAG工厂能源系统的优化:整合岩石硬度,太阳辐射,气候变化和需求方管理

作为将采矿业实现可持续发展的战略的一部分,将可再生能源整合到采矿和加工业务中变得十分必要。太阳能光伏电站与电池储能系统(PV-BESS)可以提供长期解决方案,以应对不断增长的能源成本,从而减轻与其他社会对关键资源(如清洁能源)的竞争压力。但是,面对不确定的矿石可磨性和太阳能可用性,确定这些系统的尺寸具有挑战性。在本文中,我们提出了一个集成模型来估算PV-BESS的大小,其中使用地统计学工具对矿石可磨性的变异性进行建模,使用马尔可夫链模拟模型捕获太阳辐照度的变异性,并通过优化整个系统线性随机优化 考虑为半自动研磨(SAG)磨机设定固定的采矿时间表。主要目标是在存在PV-BESS系统的情况下最大程度地降低与运行SAG轧机相关的成本,了解尺寸和成本在随机驱动因素的影响下如何变化,并揭示矿山中需求侧管理的潜力。确定所需的基础设施的大小和成本,以用于估计的可磨削性模型和50个可磨削性模拟模型的集合,并将其与地面真实情况的大小和成本进行比较。气候变化对太阳能可用性的影响是通过预测到2030年的辐照度来计算优,良和中度天与坏日之间的比率。根据加工厂的需求对库存和进料控制的效果(即需求侧管理方法)进行评估,以揭示对能源需求的影响以及光伏和储能系统的规模。该模型是根据年度成本函数进行优化的,其中小时分辨率用于太阳辐照度和硬度模型。结果表明,将太阳能整合到SAG磨机的运营中可以将总能源成本降低27%。总成本增加1%即可实现应对气候变化的稳健性。最后,使用库存来管理向工厂的矿石供应,并最大程度地减少加工所需的能源成本,可使成本降低约2%,这应该可以抵消管理库存的重新处理成本。进行评估以揭示对能源需求的影响以及光伏和存储系统的尺寸。该模型是根据年度成本函数进行优化的,其中每小时的分辨率适用于太阳辐照度和硬度模型。结果表明,将太阳能整合到SAG磨机的运营中可以将总能源成本降低27%。总成本增加1%即可实现应对气候变化的稳健性。最后,使用库存来管理向工厂的矿石供应,并最大程度地减少加工所需的能源成本,可使成本降低约2%,这应该可以抵消管理库存的重新处理成本。进行评估以揭示对能源需求的影响以及光伏和存储系统的尺寸。该模型是根据年度成本函数进行优化的,其中小时分辨率用于太阳辐照度和硬度模型。结果表明,将太阳能整合到SAG磨机的运营中可以将总能源成本降低27%。总成本增加1%即可实现应对气候变化的稳健性。最后,使用库存来管理向工厂的矿石供应,并最大程度地减少加工所需的能源成本,可使成本降低约2%,这应该可以抵消管理库存的重新处理成本。具有每小时分辨率的太阳辐照度和硬度模型。结果表明,将太阳能整合到SAG磨机的运营中可以将总能源成本降低27%。总成本增加1%即可实现应对气候变化的稳健性。最后,使用库存来管理向工厂的矿石供应,并最大程度地减少加工所需的能源成本,可使成本降低约2%,这应该可以抵消管理库存的重新处理成本。具有每小时分辨率的太阳辐照度和硬度模型。结果表明,将太阳能整合到SAG磨机的运营中可以将总能源成本降低27%。总成本增加1%即可实现应对气候变化的稳健性。最后,使用库存来管理向工厂的矿石供应,并最大程度地减少加工所需的能源成本,可使成本降低约2%,这应该可以抵消管理库存的重新处理成本。
更新日期:2019-07-01
down
wechat
bug