当前位置: X-MOL 学术Mach. Learn. › 论文详情
Skill-based curiosity for intrinsically motivated reinforcement learning
Machine Learning ( IF 2.809 ) Pub Date : 2019-10-10 , DOI: 10.1007/s10994-019-05845-8
Nicolas Bougie, Ryutaro Ichise

Reinforcement learning methods rely on rewards provided by the environment that are extrinsic to the agent. However, many real-world scenarios involve sparse or delayed rewards. In such cases, the agent can develop its own intrinsic reward function called curiosity to enable the agent to explore its environment in the quest of new skills. We propose a novel end-to-end curiosity mechanism for deep reinforcement learning methods, that allows an agent to gradually acquire new skills. Our method scales to high-dimensional problems, avoids the need of directly predicting the future, and, can perform in sequential decision scenarios. We formulate the curiosity as the ability of the agent to predict its own knowledge about the task. We base the prediction on the idea of skill learning to incentivize the discovery of new skills, and guide exploration towards promising solutions. To further improve data efficiency and generalization of the agent, we propose to learn a latent representation of the skills. We present a variety of sparse reward tasks in MiniGrid, MuJoCo, and Atari games. We compare the performance of an augmented agent that uses our curiosity reward to state-of-the-art learners. Experimental evaluation exhibits higher performance compared to reinforcement learning models that only learn by maximizing extrinsic rewards.
更新日期:2020-04-22

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug