当前位置: X-MOL 学术Int. J. Mech. Mater. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation
International Journal of Mechanics and Materials in Design ( IF 3.7 ) Pub Date : 2018-11-20 , DOI: 10.1007/s10999-018-9431-8
Hamed Safarpour , Zanyar Esmailpoor Hajilak , Mostafa Habibi

In this paper, thermal buckling and free/forced vibration characteristics of size-dependent composite cylindrical nanoshell reinforced with graphene platelets (GPLs) is presented. Also, the nanoshell is embedded in an elastic pasternak medium, which is obtained by adding a shear layer to the Winkler model. The present nano-resonator is based on a vibrating first order nanoscale cylindrical shell subjected to transverse pressure. The temperature-dependent material properties of piece-wise functionally graded graphene-reinforced composites (FG-GRCs) are assumed to be graded in the thickness direction of a cylindrical nanoshell and are estimated through a nanomechanical model. Also, Halpin–Tsai nanomechanical model in used to surmise the effective material properties of each layer. The size-dependent FG-GRCs nanoshell is analyzed using modified couple stress parameter. The novelty of the current study is in considering the effects of FG-GRCs and thermal in addition of size effect on resonance frequencies, thermal buckling and dynamic deflections of the FG-GRCs nanoshell. The governing equations and boundary conditions have been developed using Hamilton’s principle and have been solved with the aid of analytical method. The results show that, GPL distribution pattern, modified couple stress parameter, length to radius ratio, mode number, winkler coefficient and thermal environment have important role on resonance frequency, relative frequency change, thermal buckling and dynamic deflections of the FG-GRCs cylindrical nanoshell in thermal environments.



中文翻译:

基于尺寸的精确理论,用于在弹性基础上重新束缚温度相关的FG多层GPLRC复合纳米结构的热屈曲,自由和强迫振动分析

本文介绍了石墨烯薄片(GPL)增强的尺寸相关复合圆柱形纳米壳的热屈曲和自由/强迫振动特性。而且,纳米壳被嵌入弹性的Pasternak介质中,该介质是通过向Winkler模型中添加剪切层而获得的。本纳米谐振器基于经受横向压力的振动的一阶纳米级圆柱壳。分段功能梯度石墨烯增强复合材料(FG-GRCs)的温度相关材料性能假定在圆柱纳米壳的厚度方向上是渐变的,并通过纳米力学模型进行估算。同样,使用Halpin–Tsai纳米力学模型来推测每一层的有效材料性能。使用修改的耦合应力参数分析了尺寸相关的FG-GRCs纳米壳。当前研究的新颖性在于考虑FG-GRCs和热的影响以及尺寸对FG-GRCs纳米壳的共振频率,热屈曲和动态变形的影响。控制方程和边界条件是使用汉密尔顿原理开发的,并已借助解析方法进行了求解。结果表明,GPL分布模式,修正的耦合应力参数,长径比,模数,眨眼系数和热环境对FG-GRC圆柱纳米壳的共振频率,相对频率变化,热屈曲和动态挠度有重要作用。在热环境中。当前研究的新颖性在于考虑FG-GRCs和热的影响以及尺寸对FG-GRCs纳米壳的共振频率,热屈曲和动态变形的影响。控制方程和边界条件是使用汉密尔顿原理开发的,并已借助解析方法进行了求解。结果表明,GPL分布模式,修正的耦合应力参数,长径比,模数,眨眼系数和热环境对FG-GRC圆柱纳米壳的共振频率,相对频率变化,热屈曲和动态挠度有重要作用。在热环境中。当前研究的新颖性在于考虑FG-GRCs和热的影响以及尺寸对FG-GRCs纳米壳的共振频率,热屈曲和动态变形的影响。控制方程和边界条件是使用汉密尔顿原理开发的,并已借助解析方法进行了求解。结果表明,GPL分布模式,修正的耦合应力参数,长径比,模数,眨眼系数和热环境对FG-GRC圆柱纳米壳的共振频率,相对频率变化,热屈曲和动态挠度有重要作用。在热环境中。控制方程和边界条件是使用汉密尔顿原理开发的,并已借助解析方法进行了求解。结果表明,GPL分布模式,修正的耦合应力参数,长径比,模数,眨眼系数和热环境对FG-GRC圆柱纳米壳的共振频率,相对频率变化,热屈曲和动态挠度有重要作用。在热环境中。控制方程和边界条件是使用汉密尔顿原理开发的,并已借助解析方法进行了求解。结果表明,GPL分布模式,修正的耦合应力参数,长径比,模数,眨眼系数和热环境对FG-GRC圆柱纳米壳的共振频率,相对频率变化,热屈曲和动态挠度有重要作用。在热环境中。

更新日期:2018-11-20
down
wechat
bug