当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Data Disclosure Under Perfect Sample Privacy
IEEE Transactions on Information Forensics and Security ( IF 6.211 ) Pub Date : 2019-11-20 , DOI: 10.1109/tifs.2019.2954652
Borzoo Rassouli; Fernando E. Rosas; Deniz Gündüz

Perfect data privacy seems to be in fundamental opposition to the economical and scientific opportunities related to extensive data exchange. This paper defies this intuition by developing the principle of synergistic disclosure , in which collective properties of datasets are revealed without compromising the privacy of individual data samples. We study the properties of optimal strategies/mappings on finite as well as asymptotically large datasets, and discuss its fundamental limits defined as the synergistic disclosure capacity . Furthermore, we present explicit analytical expressions for the synergistic disclosure capacity of large datasets in various scenarios, and present cases in which our approach can disclose most of the information of interest. We finally discuss suboptimal schemes to provide sample privacy guarantees to large datasets at a reduced computational cost.
更新日期:2020-02-04

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug