当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Data Disclosure Under Perfect Sample Privacy
IEEE Transactions on Information Forensics and Security ( IF 6.013 ) Pub Date : 2019-11-20 , DOI: 10.1109/tifs.2019.2954652
Borzoo Rassouli; Fernando E. Rosas; Deniz Gündüz

Perfect data privacy seems to be in fundamental opposition to the economical and scientific opportunities related to extensive data exchange. This paper defies this intuition by developing the principle of synergistic disclosure, in which collective properties of datasets are revealed without compromising the privacy of individual data samples. We study the properties of optimal strategies/mappings on finite as well as asymptotically large datasets, and discuss its fundamental limits defined as the synergistic disclosure capacity. Furthermore, we present explicit analytical expressions for the synergistic disclosure capacity of large datasets in various scenarios, and present cases in which our approach can disclose most of the information of interest. We finally discuss suboptimal schemes to provide sample privacy guarantees to large datasets at a reduced computational cost.
更新日期:2020-04-22

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug