当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Software Protection Using Dynamic PUFs
IEEE Transactions on Information Forensics and Security ( IF 6.211 ) Pub Date : 2019-11-25 , DOI: 10.1109/tifs.2019.2955788
Wenjie Xiong; André Schaller; Stefan Katzenbeisser; Jakub Szefer

Low-end computing devices are becoming increasingly ubiquitous, especially due to the widespread deployment of Internet-of-Things products. There is, however, much concern about sensitive data being processed on these low-end devices which have limited protection mechanisms in place. This paper proposes a Hardware-Entangled Software Protection (HESP) scheme that leverages hardware features to protect software code from malicious modification before or during run-time. It also enables implicit hardware authentication. Thus, the software will execute correctly only on an authorized device and if the timing of the software, e.g., control flow, was not changed through malicious modifications. The proposed ideas are based on the new concept of Dynamic Physically Unclonable Functions (PUFs). Dynamic PUFs have time-varying responses and can be used to tie the software execution to the timing of software and the physical properties of a hardware device. It is further combined with existing approaches for code self-checksumming, software obfuscation, and call graph and register value scrambling to create the HESP scheme. HESP is demonstrated on commodity, off-the-shelf computing devices, where a DRAM PUF is used as an instance of a Dynamic PUF. The protection scheme can be applied automatically to LLVM Intermediate Representation (IR) code through an AutoPatcher written in Python. For a sample program containing AES encryption and decryption routine, HESP introduces 48% execution time overhead and increases the binary file size by 32.5%, which is moderate compared to other schemes such as software obfuscation. It takes about 2.6 seconds on average for the tested programs to be patched and compiled through the modified compilation flow and scripts.
更新日期:2020-02-04

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug