当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Software Protection Using Dynamic PUFs
IEEE Transactions on Information Forensics and Security ( IF 6.013 ) Pub Date : 2019-11-25 , DOI: 10.1109/tifs.2019.2955788
Wenjie Xiong; André Schaller; Stefan Katzenbeisser; Jakub Szefer

Low-end computing devices are becoming increasingly ubiquitous, especially due to the widespread deployment of Internet-of-Things products. There is, however, much concern about sensitive data being processed on these low-end devices which have limited protection mechanisms in place. This paper proposes a Hardware-Entangled Software Protection (HESP) scheme that leverages hardware features to protect software code from malicious modification before or during run-time. It also enables implicit hardware authentication. Thus, the software will execute correctly only on an authorized device and if the timing of the software, e.g., control flow, was not changed through malicious modifications. The proposed ideas are based on the new concept of Dynamic Physically Unclonable Functions (PUFs). Dynamic PUFs have time-varying responses and can be used to tie the software execution to the timing of software and the physical properties of a hardware device. It is further combined with existing approaches for code self-checksumming, software obfuscation, and call graph and register value scrambling to create the HESP scheme. HESP is demonstrated on commodity, off-the-shelf computing devices, where a DRAM PUF is used as an instance of a Dynamic PUF. The protection scheme can be applied automatically to LLVM Intermediate Representation (IR) code through an AutoPatcher written in Python. For a sample program containing AES encryption and decryption routine, HESP introduces 48% execution time overhead and increases the binary file size by 32.5%, which is moderate compared to other schemes such as software obfuscation. It takes about 2.6 seconds on average for the tested programs to be patched and compiled through the modified compilation flow and scripts.
更新日期:2020-04-22

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug