当前位置: X-MOL 学术ChemCatChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluation of a Microreactor for Flow Biocatalysis by Combined Theory and Experiment
ChemCatChem ( IF 4.5 ) Pub Date : 2020-03-24 , DOI: 10.1002/cctc.202000145
Teresa Burgahn 1 , Philip Pietrek 2 , Roland Dittmeyer 2 , Kersten S. Rabe 1 , Christof M. Niemeyer 1
Affiliation  

The operation of enzyme cascades in microfluidic devices is a current field of research that promises manifold applications in biocatalysis. For an optimization of flow biocatalysis systems it is desirable to model the reactor in silico in order to enable a better understanding and thus an economic optimization of the reaction systems. However, due to their high complexity, it is still difficult to simulate coupled enzyme reactions. We here describe a new model for a plug flow reactor consisting of a porous bed of compact uniform particles functionalized with an immobilized ketoreductase (Gre2) which is overflown by a mobile phase containing the enzymatic NADPH cofactor regeneration system based on glucose dehydrogenase (GDH). By studying different flow rates, lengths and layer thicknesses of the catalytic bed, we show that the synergy of experiment and mathematical modeling can optimize the space‐time yields of the reaction system.

中文翻译:

理论与实验相结合的流式生物催化微反应器评价

微流控设备中酶级联反应的操作是当前的研究领域,有望在生物催化中得到广泛应用。为了优化流动生物催化系统,需要对计算机反应器进行建模为了更好地理解反应系统,从而经济地优化反应系统。然而,由于它们的高度复杂性,仍然难以模拟偶联的酶反应。我们在这里描述了一种活塞流反应器的新模型,该模型由紧凑的均匀颗粒的多孔床组成,该多孔床被固定化的酮还原酶(Gre2)官能化,该流动床被包含基于葡萄糖脱氢酶(GDH)的酶促NADPH辅因子再生系统的流动相所溢出。通过研究催化床的不同流速,长度和层厚,我们表明实验和数学建模的协同作用可以优化反应系统的时空产率。
更新日期:2020-03-24
down
wechat
bug