当前位置: X-MOL 学术J. Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On a class of Lebesgue-Ljunggren-Nagell type equations
Journal of Number Theory ( IF 0.7 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.jnt.2019.12.020
Andrzej Dąbrowski , Nursena Günhan , Gökhan Soydan

Given odd, coprime integers $a$, $b$ ($a>0$), we consider the Diophantine equation $ax^2+b^{2l}=4y^n$, $x, y\in\Bbb Z$, $l \in \Bbb N$, $n$ odd prime, $\gcd(x,y)=1$. We completely solve the above Diophantine equation for $a\in\{7,11,19,43,67,163\}$, and $b$ a power of an odd prime, under the conditions $2^{n-1}b^l\not\equiv \pm 1(\mod a)$ and $\gcd(n,b)=1$. For other square-free integers $a>3$ and $b$ a power of an odd prime, we prove that the above Diophantine equation has no solutions for all integers $x$, $y$ with ($\gcd(x,y)=1$), $l\in\mathbb{N}$ and all odd primes $n>3$, satisfying $2^{n-1}b^l\not\equiv \pm 1(\mod a)$, $\gcd(n,b)=1$, and $\gcd(n,h(-a))=1$, where $h(-a)$ denotes the class number of the imaginary quadratic field $\mathbb Q(\sqrt{-a})$.

中文翻译:

关于一类 Lebesgue-Ljunggren-Nagell 型方程

给定奇数、互质整数 $a$、$b$ ($a>0$),我们考虑丢番图方程 $ax^2+b^{2l}=4y^n$, $x, y\in\Bbb Z $, $l \in \Bbb N$, $n$ 奇素数, $\gcd(x,y)=1$。在$2^{n-1}b^条件下,我们对$a\in\{7,11,19,43,67,163\}$和$b$一个奇素数的幂完全求解上述丢番图方程l\not\equiv \pm 1(\mod a)$ 和 $\gcd(n,b)=1$。对于其他无平方整数 $a>3$ 和 $b$ 是奇素数的幂,我们证明上述丢番图方程对于所有整数 $x$, $y$ 都没有解 ($\gcd(x, y)=1$), $l\in\mathbb{N}$ 和所有奇素数 $n>3$, 满足 $2^{n-1}b^l\not\equiv \pm 1(\mod a) $, $\gcd(n,b)=1$, $\gcd(n,h(-a))=1$,其中$h(-a)$表示虚二次域$\ mathbb Q(\sqrt{-a})$。
更新日期:2020-10-01
down
wechat
bug