当前位置: X-MOL 学术Q. J. Math. › 论文详情
Waring’s Problem for Rational Functions in One Variable
Quarterly Journal of Mathematics ( IF 0.704 ) Pub Date : 2020-02-03 , DOI: 10.1093/qmathj/haz052
Bo-Hae Im; Michael Larsen

Let |$f\in{\mathbb{Q}}(x)$| be a non-constant rational function. We consider ‘Waring’s problem for |$f(x)$|⁠,’ i.e., whether every element of |${\mathbb{Q}}$| can be written as a bounded sum of elements of |$\{f(a)\mid a\in{\mathbb{Q}}\}$|⁠. For rational functions of degree |$2$|⁠, we give necessary and sufficient conditions. For higher degrees, we prove that every polynomial of odd degree and every odd Laurent polynomial satisfies Waring’s problem. We also consider the ‘easier Waring’s problem’: whether every element of |${\mathbb{Q}}$| can be represented as a bounded sum of elements of |$\{\pm f(a)\mid a\in{\mathbb{Q}}\}$|⁠.
更新日期:2020-02-03

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug