当前位置: X-MOL 学术Discret. Math. › 论文详情
A generalization of Noel–Reed–Wu Theorem to signed graphs
Discrete Mathematics ( IF 0.728 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.disc.2020.111833
Wei Wang; Jianguo Qian

Let Σ be a signed graph where two edges joining the same pair of vertices with opposite signs are allowed. The zero-free chromatic number χ∗(Σ) of Σ is the minimum even integer 2k such that G admits a proper coloring f:V(Σ)↦{±1,±2,…,±k}. The zero-free list chromatic number χl∗(Σ) is the list version of zero-free chromatic number. Σ is called zero-free chromatic-choosable if χl∗(Σ)=χ∗(Σ). We show that if Σ has at most χ∗(Σ)+1 vertices then Σ is zero-free chromatic-choosable. This result strengthens Noel–Reed–Wu Theorem which states that every graph G with at most 2χ(G)+1 vertices is chromatic-choosable, where χ(G) is the chromatic number of G.
更新日期:2020-02-03

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug