当前位置: X-MOL 学术Korean J. Chem. Eng. › 论文详情
Innovative approach of in-situ fixed mode dual effect (photo-Fenton and photocatalysis) for ofloxacin degradation
Korean Journal of Chemical Engineering ( IF 2.476 ) Pub Date : 2020-01-30 , DOI: 10.1007/s11814-019-0427-3
Kritika Sharma; Steffi Talwar; Anoop Kumar Verma; Diptiman Choudhury; Borhan Mansouri

Novel composite materials composed of clay, foundry sand (FS), and fly-ash (FA) have been employed to immobilize TiO2 for incorporating in-situ dual effect for the degradation of antibiotic ofloxacin. The in-situ generation of iron from the composite beads with surface active TiO2 induced the dual effect of photo-Fenton and photocatalysis. FA/FS/TiO2 beads illustrated the best results (92% removal) at optimized conditions in the batch reactor experiments. The increment in the rate constant along with a decrease in treatment time for the dual effect has proven the credentials of the in-situ dual effect. Synergy in first-order rate constant using dual process was 51% over the single processes of photo-Fenton and photocatalysis. After 35 recycles the viability of the composed beads was observed through SEM/EDS, UV-DRS and FT-IR analysis, which further justified its use industrially. Estimation of nitrate, nitrite, and ammonia as its by-products was performed for the confirmation of mineralization. Generation of the intermediate products was also identified through GC-MS analysis, and a degradation pathway was proposed. Toxicity test confirming the nontoxic nature of the treated solution was performed on E. coli grown in Miller’s Luria Bertani Broth nutrient medium.
更新日期:2020-01-30

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug