当前位置: X-MOL 学术Appl. Clay. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influences of impurities and mineralogical structure of different kaolin minerals on thermal properties of cordierite ceramics for high-temperature thermal storage
Applied Clay Science ( IF 5.6 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.clay.2020.105485
Xinbin Lao , Xiaoyang Xu , Weihui Jiang , Jian Liang , Lifeng Miao , Qian Wu

Abstract Cordierite ceramics were prepared for high-temperature thermal storage by reaction sintering method using Longyan kaolin, Lincang kaolin and Xingzi kaolin, respectively. Effects of impurities and mineralogical structure of three different kaolin minerals on the phase compositions, microstructure, physical properties and thermal properties of cordierite ceramics for concentrated solar power were studied. Results indicated that illite in Longyan kaolin provided Na2O and K2O to promote the microstructure densification of cordierite ceramics and endowed samples sintered at 1280 °C with the highest bending strength of 94.4 MPa and thermal conductivity of 3.71 W·(m·K)−1, but increasing thermal expansion coefficients to 2.61 × 10−6 (room temperature–800 °C). Fe2O3 and TiO2 impurities in Xingzi kaolin could lower the crystallization temperature of cordierite to 1183.2 °C and the usage of Xingzi kaolin increased the softening temperature of cordierite ceramics to 1496 °C. Cordierite ceramics synthesized using Lincang kaolin with the minimum contents of impurities obtained the smallest thermal expansion coefficient of 1.72 × 10−6 (room temperature–800 °C). Tubular structure of Lincang kaolin particles was detrimental for microstructure densification and thermal conductivity. According to the requirements on thermal properties of high-temperature thermal storage ceramics, kaolin minerals for preparing cordierite thermal storage ceramics by reaction sintering method should be chosen in terms of the chemical composition and mineralogical structure.

中文翻译:

不同高岭土矿物杂质及矿物结构对高温蓄热用堇青石陶瓷热性能的影响

摘要 分别以龙岩高岭土、临沧高岭土和星子高岭土为原料,采用反应烧结法制备了用于高温蓄热的堇青石陶瓷。研究了三种不同高岭土矿物的杂质和矿物结构对聚光太阳能用堇青石陶瓷的相组成、微观结构、物理性能和热性能的影响。结果表明,龙岩高岭土中的伊利石提供了 Na2O 和 K2O,促进了堇青石陶瓷的微观结构致密化,并赋予了在 1280 ℃下烧结的样品,其最高弯曲强度为 94.4 MPa,热导率为 3.71 W·(m·K)-1,但将热膨胀系数增加到 2.61 × 10−6(室温–800 °C)。星子高岭土中的Fe2O3和TiO2杂质可使堇青石的结晶温度降低至1183.2℃,星子高岭土的使用使堇青石陶瓷的软化温度提高至1496℃。使用杂质含量最低的临沧高岭土合成堇青石陶瓷,其热膨胀系数最小,为 1.72 × 10−6(室温–800 °C)。临沧高岭土颗粒的管状结构不利于微观结构致密化和导热。根据对高温蓄热陶瓷热性能的要求,反应烧结法制备堇青石蓄热陶瓷所需的高岭土矿物应从化学成分和矿物结构上进行选择。2 °C 和星子高岭土的使用使堇青石陶瓷的软化温度提高到 1496 °C。使用杂质含量最低的临沧高岭土合成堇青石陶瓷,其热膨胀系数最小,为 1.72 × 10−6(室温–800 °C)。临沧高岭土颗粒的管状结构不利于微观结构致密化和导热。根据对高温蓄热陶瓷热性能的要求,反应烧结法制备堇青石蓄热陶瓷所需的高岭土矿物应从化学成分和矿物结构上进行选择。2 °C 和星子高岭土的使用使堇青石陶瓷的软化温度提高到 1496 °C。使用杂质含量最低的临沧高岭土合成堇青石陶瓷,其热膨胀系数最小,为 1.72 × 10−6(室温–800 °C)。临沧高岭土颗粒的管状结构不利于微观结构致密化和导热。根据对高温蓄热陶瓷热性能的要求,反应烧结法制备堇青石蓄热陶瓷所需的高岭土矿物应从化学成分和矿物结构上进行选择。使用杂质含量最低的临沧高岭土合成堇青石陶瓷,其热膨胀系数最小,为 1.72 × 10−6(室温–800 °C)。临沧高岭土颗粒的管状结构不利于微观结构致密化和导热。根据对高温蓄热陶瓷热性能的要求,反应烧结法制备堇青石蓄热陶瓷所需的高岭土矿物应从化学成分和矿物结构上进行选择。使用杂质含量最低的临沧高岭土合成堇青石陶瓷,其热膨胀系数最小,为 1.72 × 10−6(室温–800 °C)。临沧高岭土颗粒的管状结构不利于微观结构致密化和导热。根据对高温蓄热陶瓷热性能的要求,反应烧结法制备堇青石蓄热陶瓷所需的高岭土矿物应从化学成分和矿物结构上进行选择。
更新日期:2020-03-01
down
wechat
bug