当前位置: X-MOL 学术Process Saf. Environ. Prot. › 论文详情
Effect of hybrid (microwave-H2O2) feed sludge pretreatment on single and two-stage anaerobic digestion efficiency of real mixed sewage sludge
Process Safety and Environmental Protection ( IF 4.384 ) Pub Date : 2020-01-31 , DOI: 10.1016/j.psep.2020.01.032
Herald Wilson Ambrose; Calvin Tse-Liang Chin; Eugene Hong; Ligy Philip; G.K. Suraishkumar; Tushar Kanti Sen; Mehdi Khiadani

The impacts of hybrid microwave-oxidative (MW-H2O2) feed sludge pretreatment on performance efficiency of conventional single-stage and a novel two-stage semi-continuous anaerobic digestion of mixed waste activated sludge were studied to enhance biogas production and digestate quality. Untreated two-stage anaerobic digestion (thermophilic followed by mesophilic) achieved 76.4 ml/gTCOD methane yield compared to 40.4 ml/gTCOD achieved through conventional mesophilic anaerobic digestion, with an increase in methane percentage. Application of hybrid (MW-H2O2) sludge pretreatment in the two-stage digestion enhanced initial sludge hydrolysis/solubilisation and consequently achieved 143.4 ml/gTCOD methane yield. Also, the highest methane percentage of 71% was achieved during peak methanogenesis stage in this process. The synergetic effects of hybrid pretreatment were also confirmed by the higher release of extracellular polymeric substances. Oxidative stress exerted by the pretreatment resulted in the accumulation of superoxide radicals in the initial thermophilic phase; followed by increased sludge activity and biomethanation in the later phase of two-stage digestion. Hybrid feed sludge pretreatment in the two-stage system achieved a 73% volatile solids reduction and more than 90% reduction of faecal coliform. The various kinetic model parameters were determined by the application of the modified Gompertz model. These results illustrate that a novel semi-continuous two-stage anaerobic digester with hybrid feed sludge pretreatment improved sludge hydrolysis, sludge solubilisation, biogas production, sludge stabilization and reduces sludge retention time, and also achieves “class-A” biosolids by significant pathogen destruction.
更新日期:2020-01-31

 

全部期刊列表>>
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug