当前位置: X-MOL 学术Process Saf. Environ. Prot. › 论文详情
Chimney effect induced by smoldering fire in a U-shaped porous channel: A governing mechanism of the persistent underground coal fires
Process Safety and Environmental Protection ( IF 4.384 ) Pub Date : 2020-01-30 , DOI: 10.1016/j.psep.2020.01.029
Zeyang Song; Xinyan Huang; Claudia Kuenzer; Hongqing Zhu; Juncheng Jiang; Xuhai Pan; Xiaoxing Zhong

This paper presents underground coal fires (UCF) induced natural ventilation through a U-shaped porous channel. Height of the U-shaped channel (the fire depth) is one of key elements determining the accessibility of air supply to UCF. Conventionally, we acknowledge that under the external wind driving force, air supply to underground space should decay with increasing the fire depth. However, under the thermal buoyancy force induced by UCF, responses of air supply and UCF to the fire depth are uncertain. Herein we propose a 1/20-scale experimental framework to measure air velocity, and to quantify the burning rate, the fire spread rate and the burning temperature of UCF at different fire depths (H = 1.6 - 4.6 m) with variable aperture sizes (Φ = 1 - 4 cm). A one-dimensional model correlating the air velocity with the fire depth is validated and then extrapolates laboratory-scale free channels into field-scale (H = 100 m) percolation channels. We find the ‘chimney effect’ – air supply driven by the buoyant smoke of UCF is unexpectedly enhanced with increasing the fire depth; the enhanced air supply due to the chimney effect facilitates burning of coal. The chimney effect, serving as a self-sustaining mechanism of air supply to UCF, is a significant governing mechanism for persistent UCF burning for hundreds or even thousands of years.
更新日期:2020-01-31

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug