当前位置: X-MOL 学术Bioelectromagnetics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Possible Mechanism for Synchronized Detection of Weak Magnetic Fields by Nerve Cells.
Bioelectromagnetics ( IF 1.9 ) Pub Date : 2020-01-28 , DOI: 10.1002/bem.22251
Frank Barnes 1 , Ben Greenebaum 2
Affiliation  

We propose that biological systems may detect static and slowly varying magnetic fields by the modification of the timing of firing of adjacent nerve cells through the local influence of the magnetic field generated by current from one cell's firing on its nearest neighbors. The time delay of an adjacent nerve cell pulse with respect to the initial clock nerve cell pulse could serve as a signal for sensing the magnitude and direction of the magnetic field in a direction perpendicular to the current flows in the cells. It has been shown that changes in static magnetic fields modify concentrations of reactive oxygen species, calcium, pH, the growth rates of fibrosarcoma cells, and membrane potentials. These are linked to changes in membrane potentials that can either inhibit or accelerate the firing rate of pacemaker or clock cells. This mechanism may have applications to animals' use of magnetic fields for navigation or other purposes, possibly in conjunction with other mechanisms. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.

中文翻译:

神经细胞同步检测弱磁场的可能机制。

我们提出,生物系统可以通过改变相邻神经细胞的发射时机来检测静态和缓慢变化的磁场,而这些时机是通过从一个细胞发射电流产生的磁场对其最近的邻居产生的磁场的局部影响来进行的。相邻神经细胞脉冲相对于初始时钟神经细胞脉冲的时间延迟可以用作用于在垂直于细胞中流动的方向上感测磁场的大小和方向的信号。已经表明,静磁场的变化会改变活性氧的浓度,钙,pH,纤维肉瘤细胞的生长速率和膜电位。这些与膜电位的变化有关,而膜电位的变化可以抑制或加快起搏器或时钟单元的发射速度。该机制可能与其他机制结合起来应用于动物将磁场用于导航或其他目的。生物电磁学。©2020生物电磁学会。
更新日期:2020-03-16
down
wechat
bug