当前位置: X-MOL 学术BMC Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A mouse ear skin model to study the dynamics of innate immune responses against Staphylococcus aureus biofilms.
BMC Microbiology ( IF 4.2 ) Pub Date : 2020-01-29 , DOI: 10.1186/s12866-019-1635-z
Aizat Iman Abdul Hamid 1 , Laurence Nakusi 1 , Mickael Givskov 2 , Young-Tae Chang 3 , Claire Marquès 1 , Pascale Gueirard 1
Affiliation  

BACKGROUND Staphylococcus aureus is a human pathogen that is a common cause of nosocomial infections and infections on indwelling medical devices, mainly due to its ability to shift between the planktonic and the biofilm/sessile lifestyle. Biofilm infections present a serious problem in human medicine as they often lead to bacterial persistence and thus to chronic infections. The immune responses elicited by biofilms have been described as specific and ineffective. In the few experiments performed in vivo, the importance of neutrophils and macrophages as a first line of defence against biofilm infections was clearly established. However, the bilateral interactions between biofilms and myeloid cells remain poorly studied and analysis of the dynamic processes at the cellular level in tissues inoculated with biofilm bacteria is still an unexplored field. It is urgent, therefore, to develop biologically sound experimental approaches in vivo designed to extract specific immune signatures from the planktonic and biofilm forms of bacteria. RESULTS We propose an in vivo transgenic mouse model, used in conjunction with intravital confocal microscopy to study the dynamics of host inflammatory responses to bacteria. Culture conditions were created to prepare calibrated inocula of fluorescent planktonic and biofilm forms of bacteria. A confocal imaging acquisition and analysis protocol was then drawn up to study the recruitment of innate immune cells in the skin of LysM-EGFP transgenic mice. Using the mouse ear pinna model, we showed that inflammatory responses to S. aureus can be quantified over time and that the dynamics of innate immune cells after injection of either the planktonic or biofilm form can be characterized. First results showed that the ability of phagocytic cells to infiltrate the injection site and their motility is not the same in planktonic and biofilm forms of bacteria despite the cells being considerably recruited in both cases. CONCLUSION We developed a mouse model of infection to compare the dynamics of the inflammatory responses to planktonic and biofilm bacteria at the tissue and cellular levels. The mouse ear pinna model is a powerful imaging system to analyse the mechanisms of biofilm tolerance to immune attacks.

中文翻译:

小鼠耳朵皮肤模型,用于研究针对金黄色葡萄球菌生物膜的先天免疫反应的动力学。

背景技术金黄色葡萄球菌是人类病原体,是引起医院感染和留置医疗器械感染的常见原因,主要是由于其在浮游生物和生物膜/无固定生活方式之间转移的能力。生物膜感染在人类医学中提出了一个严重的问题,因为它们通常导致细菌的持久性并因此导致慢性感染。生物膜引起的免疫反应已被描述为特异性和无效的。在体内进行的一些实验中,嗜中性粒细胞和巨噬细胞作为抵御生物膜感染的第一道防线的重要性已得到明确确立。然而,生物膜与髓样细胞之间的双边相互作用仍未得到很好的研究,并且在生物膜细菌接种的组织中在细胞水平上动态过程的分析仍是一个尚未探索的领域。因此,迫切需要在体内开发生物学上合理的实验方法,以从浮游生物和生物膜形式的细菌中提取特定的免疫特征。结果我们提出了一种体内转基因小鼠模型,该模型与活体共聚焦显微镜一起用于研究宿主对细菌的炎症反应的动力学。创建培养条件以准备荧光浮游生物和生物膜形式细菌的校准接种物。然后制定了共聚焦成像采集和分析方案,以研究LysM-EGFP转基因小鼠皮肤中先天免疫细胞的募集。使用小鼠耳廓模型,我们显示出可以随时间量化对金黄色葡萄球菌的炎症反应,并且可以表征浮游生物或生物膜形式注射后先天免疫细胞的动力学。最初的结果表明,尽管浮游细胞和生物膜形式的细菌在两种情况下都大量募集,但吞噬细胞浸润注射部位的能力及其运动性并不相同。结论我们开发了一种感染小鼠模型,以比较在组织和细胞水平上对浮游细菌和生物膜细菌的炎症反应的动力学。小鼠耳廓模型是功能强大的成像系统,可分析生物膜对免疫攻击的耐受性机制。金黄色葡萄球菌可以随时间定量,并且可以表征注射浮游生物或生物膜形式后先天免疫细胞的动力学。最初的结果表明,尽管浮游细胞和生物膜形式的细菌在两种情况下都大量募集,但吞噬细胞浸润注射部位的能力及其运动性并不相同。结论我们开发了一种感染小鼠模型,以比较在组织和细胞水平上对浮游细菌和生物膜细菌的炎症反应的动力学。小鼠耳廓模型是功能强大的成像系统,可分析生物膜对免疫攻击的耐受性机制。金黄色葡萄球菌可以随时间定量,并且可以表征注射浮游生物或生物膜形式后先天免疫细胞的动力学。最初的结果表明,尽管浮游细胞和生物膜形式的细菌在两种情况下都大量募集,但吞噬细胞浸润注射部位的能力及其运动性并不相同。结论我们开发了一种感染小鼠模型,以比较在组织和细胞水平上对浮游细菌和生物膜细菌的炎症反应的动力学。小鼠耳廓模型是功能强大的成像系统,可分析生物膜对免疫攻击的耐受性机制。最初的结果表明,尽管浮游细胞和生物膜形式的细菌在两种情况下都大量募集,但吞噬细胞浸润注射部位的能力及其运动性并不相同。结论我们开发了一种感染小鼠模型,以比较在组织和细胞水平上对浮游细菌和生物膜细菌的炎症反应的动力学。小鼠耳廓模型是功能强大的成像系统,可分析生物膜对免疫攻击的耐受性机制。最初的结果表明,尽管浮游细胞和生物膜形式的细菌在两种情况下都大量募集,但吞噬细胞浸润注射部位的能力及其运动性并不相同。结论我们开发了一种感染小鼠模型,以比较在组织和细胞水平上对浮游细菌和生物膜细菌的炎症反应的动力学。小鼠耳廓模型是功能强大的成像系统,可分析生物膜对免疫攻击的耐受性机制。结论我们开发了一种感染小鼠模型,以比较在组织和细胞水平上对浮游细菌和生物膜细菌的炎症反应的动力学。小鼠耳廓模型是功能强大的成像系统,可分析生物膜对免疫攻击的耐受性机制。结论我们开发了一种感染小鼠模型,以比较在组织和细胞水平上对浮游细菌和生物膜细菌的炎症反应的动力学。小鼠耳廓模型是功能强大的成像系统,可分析生物膜对免疫攻击的耐受性机制。
更新日期:2020-01-30
down
wechat
bug