当前位置: X-MOL 学术Nanoscale Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanochannel-Controlled Synthesis of Ultrahigh Nitrogen-Doping Efficiency on Mesoporous Fe/N/C Catalysts for Oxygen Reduction Reaction.
Nanoscale Research Letters ( IF 5.418 ) Pub Date : 2020-01-28 , DOI: 10.1186/s11671-020-3254-x
Chaozhong Guo 1 , Yanrong Li 1 , Zhaoxu Li 2 , Yao Liu 1 , Yujun Si 3 , Zhongli Luo 2
Affiliation  

Designing appropriate methods to effectively enhance nitrogen-doping efficiency and active-site density is essential to boost the oxygen reduction reaction (ORR) activity of non-platinum Fe/N/C-type electrocatalysts. Here, we propose a facile and effective strategy to design a mesopore-structured Fe/N/C catalyst for the ORR with ultrahigh BET surface area and outstanding conductivity via nanochannels of molecular sieve-confined pyrolysis of Fe2+ ions coordinated with 2,4,6-tri(2-pyridyl)-1,3,5-triazine complexes as a novel precursor with the stable coordination effect. Combining the nanochannel-confined effect with the stable coordination effect can synergistically improve the thermal stability and stabilize the nitrogen-enriched active sites, and help to control the loss of active N atoms during pyrolysis process and to further obtain a high active-site density for enhancing the ORR activity. The as-prepared Fe/N/C electrocatalyst has exhibited excellent catalytic activity with an onset potential of ~ 0.841 V (versus RHE) closely approaching the Pt/C catalyst and high long-term stability in alkaline electrolyte. Besides, low-hydrogen peroxide yield (< 6.5%) and high electron transfer number (3.88-3.94) can be found on this catalyst, indicating that it is a valuable substitute for traditional Pt/C catalysts. This work paves a new way to design high-performance Fe/N/C electrocatalysts and deepens the understanding of active site and ORR catalysis mechanism.

中文翻译:

介孔Fe / N / C催化剂上纳米通道控制合成超高氮掺杂效率的氧还原反应。

设计适当的方法来有效地提高氮掺杂效率和活性位密度对于提高非铂Fe / N / C型电催化剂的氧还原反应(ORR)活性至关重要。在这里,我们提出了一种简便有效的策略,以介孔结构的Fe / N / C催化剂为设计对象,通过具有2、4、6配位的Fe2 +离子分子筛限制热解的纳米通道,用于具有超高BET表面积和出色电导率的ORR -三(2-吡啶基)-1,3,5-三嗪配合物是具有稳定配位作用的新型前体。将纳米通道限制效应与稳定的配位效应相结合,可以协同提高热稳定性并稳定富氮活性位点,并有助于控制热解过程中活性N原子的损失,并进一步获得高活性位点密度以增强ORR活性。所制备的Fe / N / C电催化剂表现出优异的催化活性,其起始电势约为0.841 V(相对于RHE),非常接近Pt / C催化剂,并且在碱性电解液中具有很高的长期稳定性。此外,在该催化剂上发现过氧化氢产率低(<6.5%)和高电子转移数(3.88-3.94),表明它是传统Pt / C催化剂的有价值的替代品。这项工作为设计高性能Fe / N / C电催化剂开辟了一条新途径,并加深了对活性位点和ORR催化机理的理解。所制备的Fe / N / C电催化剂表现出优异的催化活性,其起始电势约为0.841 V(相对于RHE),非常接近Pt / C催化剂,并且在碱性电解液中具有很高的长期稳定性。此外,在该催化剂上发现过氧化氢产率低(<6.5%)和电子转移数高(3.88-3.94),表明它是传统Pt / C催化剂的有价值的替代品。这项工作为设计高性能Fe / N / C电催化剂开辟了一条新途径,并加深了对活性位点和ORR催化机理的理解。所制备的Fe / N / C电催化剂表现出优异的催化活性,其起始电势约为0.841 V(相对于RHE),非常接近Pt / C催化剂,并且在碱性电解液中具有很高的长期稳定性。此外,在该催化剂上发现过氧化氢产率低(<6.5%)和高电子转移数(3.88-3.94),表明它是传统Pt / C催化剂的有价值的替代品。这项工作为设计高性能Fe / N / C电催化剂开辟了一条新途径,并加深了对活性位点和ORR催化机理的理解。表明它是传统Pt / C催化剂的宝贵替代品。这项工作为设计高性能Fe / N / C电催化剂开辟了一条新途径,并加深了对活性位点和ORR催化机理的理解。表明它是传统Pt / C催化剂的宝贵替代品。这项工作为设计高性能Fe / N / C电催化剂开辟了一条新途径,并加深了对活性位点和ORR催化机理的理解。
更新日期:2020-01-30
down
wechat
bug