当前位置: X-MOL 学术Nat. Rev. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Superconductor–semiconductor hybrid-circuit quantum electrodynamics
Nature Reviews Physics ( IF 38.5 ) Pub Date : 2020-01-29 , DOI: 10.1038/s42254-019-0135-2
Guido Burkard , Michael J. Gullans , Xiao Mi , Jason R. Petta

Light–matter interactions at the single-particle level have generally been explored in the context of atomic, molecular and optical physics. Recent advances motivated by quantum information science have made it possible to explore coherent interactions between photons trapped in superconducting cavities and superconducting qubits. In the context of quantum information, the study of coherent interactions between single charges and spins in semiconductors and photons trapped in superconducting cavities is very relevant, as the spin degree of freedom has a coherence time that can potentially exceed that of superconducting qubits, and cavity photons can serve to effectively overcome the limitation of short-range interaction inherent to spin qubits. Here, we review recent advances in hybrid ‘super–semi’ quantum systems, which coherently couple superconducting cavities to semiconductor quantum dots. We first present an overview of the physics governing the behaviour of superconducting cavities, semiconductor quantum dots and their modes of interaction. We then survey experimental progress in the field, focusing on recent demonstrations of cavity quantum electrodynamics in the strong-coupling regime with a single charge and a single spin. Finally, we broadly discuss promising avenues of future research, including the use of super–semi systems to investigate phenomena in condensed-matter physics.



中文翻译:

超导体-半导体混合电路量子电动力学

通常已经在原子,分子和光学物理学的背景下研究了单粒子水平的光-物质相互作用。量子信息科学推动的最新进展使得探索陷于超导腔和超导量子位中的光子之间的相干相互作用成为可能。在量子信息的背景下,研究单电荷与半导体和自旋在超导腔中的光子之间的自旋之间的相干相互作用非常重要,因为自旋自由度的相干时间可能超过超导量子位和腔的相干时间。光子可以有效地克服自旋量子位固有的短程相互作用的限制。在这里,我们回顾了混合“超-半”量子系统的最新进展,将超导腔与半导体量子点相干耦合。我们首先介绍控制超导腔,半导体量子点及其相互作用方式的物理学。然后,我们调查该领域的实验进展,重点关注具有单电荷和单自旋的强耦合体系中腔量子电动力学的最新证明。最后,我们广泛讨论了未来研究的有希望的途径,包括使用超半系统来研究凝聚态物理中的现象。重点关注具有单电荷和单自旋的强耦合体系中腔量子电动力学的最新证明。最后,我们广泛讨论了未来研究的有希望的途径,包括使用超半系统来研究凝聚态物理中的现象。重点关注具有单电荷和单自旋的强耦合体系中腔量子电动力学的最新证明。最后,我们广泛讨论了未来研究的有希望的途径,包括使用超半系统来研究凝聚态物理中的现象。

更新日期:2020-01-29
down
wechat
bug