当前位置: X-MOL 学术arXiv.cs.CE › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A New Meshless "Fragile Points Method" and A Local Variational Iteration Method for General Transient Heat Conduction in Anisotropic Nonhomogeneous Media
arXiv - CS - Computational Engineering, Finance, and Science Pub Date : 2020-01-23 , DOI: arxiv-2001.09034
Yue Guan, Rade Grujicic, Xuechuan Wang, Leiting Dong and Satya N. Atluri

A new and effective computational approach is presented for analyzing transient heat conduction problems. The approach consists of a meshless Fragile Points Method (FPM) being utilized for spatial discretization, and a Local Variational Iteration (LVI) scheme for time discretization. Anisotropy and nonhomogeneity do not give rise to any difficulties in the present implementation. The meshless FPM is based on a Galerkin weak-form formulation and thus leads to symmetric matrices. Local, very simple, polynomial and discontinuous trial and test functions are employed. In the meshless FPM, Interior Penalty Numerical Fluxes are introduced to ensure the consistency of the method. The LVIM in the time domain is generated as a combination of the Variational Iteration Method (VIM) applied over a large time interval and numerical algorithms. A set of collocation nodes are employed in each finitely large time interval. The FPM + LVIM approach is capable of solving transient heat transfer problems in complex geometries with mixed boundary conditions, including pre-existing cracks. Numerical examples are presented in 2D and 3D domains. Both functionally graded materials and composite materials are considered. It is shown that, with suitable computational parameters, the FPM + LVIM approach is not only accurate, but also efficient, and has reliable stability under relatively large time intervals. The present methodology represents a considerable improvement to the current state of science in computational transient heat conduction in anisotropic nonhomogeneous media.

中文翻译:

各向异性非均匀介质中一般瞬态热传导的一种新的无网格“脆点法”和局部变分迭代法

提出了一种新的有效计算方法来分析瞬态热传导问题。该方法包括用于空间离散化的无网格脆弱点方法 (FPM) 和用于时间离散化的局部变分迭代 (LVI) 方案。各向异性和非均匀性在本实施中不会引起任何困难。无网格 FPM 基于 Galerkin 弱形式公式,因此导致对称矩阵。使用局部的、非常简单的多项式和不连续的试验和测试函数。在无网格 FPM 中,引入了内部惩罚数值通量以确保方法的一致性。时域中的 LVIM 是作为在大时间间隔上应用的变分迭代法 (VIM) 和数值算法的组合而生成的。在每个有限大的时间间隔中采用一组搭配节点。FPM + LVIM 方法能够解决具有混合边界条件(包括预先存在的裂纹)的复杂几何形状中的瞬态传热问题。数值示例在 2D 和 3D 域中呈现。考虑了功能梯度材料和复合材料。结果表明,在计算参数合适的情况下,FPM+LVIM方法不仅准确,而且高效,并且在较大的时间间隔下具有可靠的稳定性。本方法代表了对各向异性非均匀介质中计算瞬态热传导的科学现状的显着改进。FPM + LVIM 方法能够解决具有混合边界条件(包括预先存在的裂纹)的复杂几何形状中的瞬态传热问题。数值示例在 2D 和 3D 域中呈现。考虑了功能梯度材料和复合材料。结果表明,在计算参数合适的情况下,FPM+LVIM方法不仅准确,而且高效,并且在较大的时间间隔下具有可靠的稳定性。本方法代表了对各向异性非均匀介质中计算瞬态热传导的科学现状的显着改进。FPM + LVIM 方法能够解决具有混合边界条件(包括预先存在的裂纹)的复杂几何形状中的瞬态传热问题。数值示例在 2D 和 3D 域中呈现。考虑了功能梯度材料和复合材料。结果表明,在计算参数合适的情况下,FPM+LVIM方法不仅准确,而且高效,并且在较大的时间间隔下具有可靠的稳定性。本方法代表了对各向异性非均匀介质中计算瞬态热传导的科学现状的显着改进。考虑了功能梯度材料和复合材料。结果表明,在计算参数合适的情况下,FPM+LVIM方法不仅准确,而且高效,并且在较大的时间间隔下具有可靠的稳定性。本方法代表了对各向异性非均匀介质中计算瞬态热传导的科学现状的显着改进。考虑了功能梯度材料和复合材料。结果表明,在计算参数合适的情况下,FPM+LVIM方法不仅准确,而且高效,并且在较大的时间间隔下具有可靠的稳定性。本方法代表了对各向异性非均匀介质中计算瞬态热传导的科学现状的显着改进。
更新日期:2020-01-27
down
wechat
bug