当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study
Fuel ( IF 7.4 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.fuel.2020.117143
Juntian Niu , Yalan Wang , Yanying Qi , Anh H. Dam , Hongmin Wang , Yi-An Zhu , Anders Holmen , Jingyu Ran , De Chen

Abstract In this contribution, we combine density functional theory (DFT) calculations, experimental kinetic study and DFT-assisted analysis to elucidate the impact of the interface of monolayer Pt on the Ni surface on catalytic performance of steam methane reforming including carbon formation on core-shell (Ni@Pt) catalysts and compare it with Ni and Pt catalysts. We demonstrate that core-shell structured Ni@Pt significantly lowers the carbon formation without sacrificing much the activity. The DFT results demonstrate that the metal identity, core shell structure and support have significant impacts on the reaction mechanisms. The direct methane activation is energetically favorable reaction pathway on Ni, while the OH* assisted methane activation is the favorable pathway on Pt and Ni@Pt catalysts, where methane activation is the rate-determining step on all catalysts. We unambiguously reveal that the core-shell Ni@Pt catalyst modified the surface Pt electron density and shifted d-band center away from Fermi level compared to Ni(1 1 1) and Pt(1 1 1). It results in a strong basic surface OH* which actively reacts with CHx and thus enhances carbon formation resistance. Above all, Ni-core/Pt-shell particle could decouple the activity and carbon resistance to keep the activity and reduce carbon formation simultaneously in methane steam reforming. In addition, by taking into account the activation of steam on the support, the effective activation energy estimated from DFT-assisted analysis is well consistent with the experimental value on the both Ni and Ni@Pt catalysts, which could shed some light on building a bridge between experimental work and DFT-assisted kinetic study.

中文翻译:

从 DFT 和实验动力学研究对 Pt/Ni 上甲烷蒸汽重整的新机制见解

摘要 在这篇文章中,我们结合密度泛函理论 (DFT) 计算、实验动力学研究和 DFT 辅助分析来阐明单层 Pt 与 Ni 表面的界面对蒸汽甲烷重整催化性能的影响,包括在核心上形成碳。壳 (Ni@Pt) 催化剂并将其与 Ni 和 Pt 催化剂进行比较。我们证明核壳结构的 Ni@Pt 在不牺牲太多活性的情况下显着降低了碳的形成。DFT 结果表明金属特性、核壳结构和载体对反应机制有显着影响。甲烷直接活化是 Ni 上的有利反应途径,而 OH* 辅助甲烷活化是 Pt 和 Ni@Pt 催化剂的有利途径,其中甲烷活化是所有催化剂的速率决定步骤。我们明确地揭示,与 Ni(1 1 1) 和 Pt(1 1 1) 相比,核壳 Ni@Pt 催化剂改变了表面 Pt 电子密度并使 d 带中心远离费米能级。它产生强碱性表面 OH*,可与 CHx 积极反应,从而增强抗碳形成能力。最重要的是,Ni-核/Pt-壳颗粒可以将活性和碳电阻解耦,以保持活性并同时减少甲烷蒸汽重整中的碳形成。此外,通过考虑载体上蒸汽的活化,从 DFT 辅助分析估计的有效活化能与 Ni 和 Ni@Pt 催化剂的实验值非常一致,
更新日期:2020-04-01
down
wechat
bug