当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large-area solid oxide cells with La0.6Sr0.4CoO3-δ infiltrated oxygen electrodes for electricity generation and hydrogen production
Journal of Power Sources ( IF 9.2 ) Pub Date : 2020-01-25 , DOI: 10.1016/j.jpowsour.2020.227742
Xiaofeng Tong , Simona Ovtar , Karen Brodersen , Peter Vang Hendriksen , Ming Chen

Infiltration is an effective way to improve the performance of the oxygen electrode for solid oxide cells (SOCs). Most studies on infiltrated SOCs are carried out on button cells with a small active area. Here, we report on the preparation of large-area fuel-electrode-supported SOCs with a La0.6Sr0.4CoO3-δ (LSC) infiltrated gadolinia-doped ceria (CGO) oxygen electrode. The electrochemical performance of the resulting SOCs is examined at 4 × 4 cm2 level (active area). The cell delivers a power density of 1.08 W cm−2 at 0.6 V and 750 °C in fuel cell mode with high fuel and oxygen utilization of 52 and 57%, respectively; in electrolysis mode, the current density reaches 1.07 A cm−2 at 1.3 V and 750 °C with a steam utilization of 60%. Additionally, the influence of feed gas composition on cell performance and the short-term durability of the cell in electrolysis mode are studied. Electrochemical impedance spectroscopy (EIS) results and the post-test microstructural characterization demonstrate that there is no visible degradation of the LSC infiltrated CGO oxygen electrode after the durability test. These results highlight the potential of large-scale production of high-performance SOCs by designing nanostructured electrode via infiltration.



中文翻译:

带有La 0.6 Sr 0.4 CoO3 渗透氧电极的大面积固体氧化物电池,用于发电和制氢

渗透是提高用于固体氧化物电池(SOC)的氧气电极性能的有效方法。关于渗透SOC的大多数研究都是在活动区域​​较小的纽扣电池上进行的。在这里,我们报告的制备与La 0.6 Sr 0.4 CoO3 (LSC)渗透的掺ado氧化铈(CGO)氧电极的大面积燃料电极支持的SOC 。在4×4 cm 2水平(有效面积)下检查所得SOC的电化学性能。 在燃料电池模式下,该电池在0.6 V和750°C下的功率密度为1.08 W cm -2,燃料和氧气的利用率分别为52%和57%。在电解模式下,电流密度达到1.07 A cm -2在1.3 V和750°C的条件下,蒸汽利用率为60%。另外,研究了进料气体组成对电解模式下电池性能和电池短期耐久性的影响。电化学阻抗谱(EIS)结果和测试后的微结构表征表明,在耐久性测试后,LSC渗透的CGO氧电极没有可见的降解。这些结果突出了通过通过渗透设计纳米结构电极可大规模生产高性能SOC的潜力。

更新日期:2020-01-26
down
wechat
bug