当前位置: X-MOL 学术NeuroImage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cardiac and respiration-induced brain deformations in humans quantified with high-field MRI
NeuroImage ( IF 5.7 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.neuroimage.2020.116581
Jacob Jan Sloots 1 , Geert Jan Biessels 2 , Jaco J M Zwanenburg 1
Affiliation  

Microvascular blood volume pulsations due to the cardiac and respiratory cycles induce brain tissue deformation and, as such, are considered to drive the brain's waste clearance system. We have developed a high-field magnetic resonance imaging (MRI) technique to quantify both cardiac and respiration-induced tissue deformations, which could not be assessed noninvasively before. The technique acquires motion encoded snapshot images in which various forms of motion and confounders are entangled. First, we optimized the motion sensitivity for application in the human brain. Next, we isolated the heartbeat and respiration-related deformations, by introducing a linear model that fits the snapshot series to the recorded physiological information. As a result, we obtained maps of the physiological tissue deformation with 3 mm isotropic spatial resolution. Heartbeat- and respiration induced volumetric strain were significantly different from zero in the basal ganglia (median (25-75% interquartile range): 0.85·10-3 (0.39·10-3-1.05·10-3), p = 0.0008 and -0.28·10-3 (-0.41·10-3-0.06·10-3), p = 0.047, respectively). Smaller volumetric strains were observed in the white matter of the centrum semi ovale (0.28·10-3 (0-0.59·10-3) and -0.06·10-3 (-0.17·10-3-0.20·10-3)), which was only significant for the heart beat (p = 0.02 and p = 0.7, respectively). Furthermore, heartbeat induced volumetric strain was about three times larger than respiration induced volumetric strain. This technique opens a window on the driving forces of the human brain clearance system.

中文翻译:

用高场 MRI 量化的人类心脏和呼吸引起的大脑变形

由于心脏和呼吸周期引起的微血管血容量脉动会导致脑组织变形,因此被认为是驱动大脑废物清除系统的动力。我们开发了一种高场磁共振成像 (MRI) 技术来量化心脏和呼吸引起的组织变形,这在以前无法进行无创评估。该技术获取运动编码的快照图像,其中各种形式的运动和混杂因素纠缠在一起。首先,我们优化了在人脑中应用的运动灵敏度。接下来,我们通过引入一个线性模型,将快照系列与记录的生理信息相匹配,从而分离出与心跳和呼吸相关的变形。因此,我们获得了具有 3 mm 各向同性空间分辨率的生理组织变形图。心跳和呼吸引起的体积应变在基底节中显着不同于零(中位数(25-75% 四分位距):0.85·10-3 (0.39·10-3-1.05·10-3),p = 0.0008 和-0.28·10-3 (-0.41·10-3-0.06·10-3), p = 0.047)。在半卵圆中心的白质中观察到较小的体积应变 (0.28·10-3 (0-0.59·10-3) 和 -0.06·10-3 (-0.17·10-3-0.20·10-3) ),这仅对心跳显着(分别为 p = 0.02 和 p = 0.7)。此外,心跳引起的体积应变大约是呼吸引起的体积应变的三倍。这项技术为人类大脑清除系统的驱动力打开了一扇窗。心跳和呼吸引起的体积应变在基底节中显着不同于零(中位数(25-75% 四分位距):0.85·10-3 (0.39·10-3-1.05·10-3),p = 0.0008 和-0.28·10-3 (-0.41·10-3-0.06·10-3), p = 0.047)。在半卵圆中心的白质中观察到较小的体积应变 (0.28·10-3 (0-0.59·10-3) 和 -0.06·10-3 (-0.17·10-3-0.20·10-3) ),这仅对心跳显着(分别为 p = 0.02 和 p = 0.7)。此外,心跳引起的体积应变大约是呼吸引起的体积应变的三倍。这项技术为人类大脑清除系统的驱动力打开了一扇窗。心跳和呼吸引起的体积应变在基底节中显着不同于零(中位数(25-75% 四分位距):0.85·10-3 (0.39·10-3-1.05·10-3),p = 0.0008 和-0.28·10-3 (-0.41·10-3-0.06·10-3), p = 0.047)。在半卵圆中心的白质中观察到较小的体积应变 (0.28·10-3 (0-0.59·10-3) 和 -0.06·10-3 (-0.17·10-3-0.20·10-3) ),这仅对心跳显着(分别为 p = 0.02 和 p = 0.7)。此外,心跳引起的体积应变大约是呼吸引起的体积应变的三倍。这项技术为人类大脑清除系统的驱动力打开了一扇窗。28·10-3 (-0.41·10-3-0.06·10-3), p = 0.047)。在半卵圆中心的白质中观察到较小的体积应变 (0.28·10-3 (0-0.59·10-3) 和 -0.06·10-3 (-0.17·10-3-0.20·10-3) ),这仅对心跳显着(分别为 p = 0.02 和 p = 0.7)。此外,心跳引起的体积应变大约是呼吸引起的体积应变的三倍。这项技术为人类大脑清除系统的驱动力打开了一扇窗。28·10-3 (-0.41·10-3-0.06·10-3), p = 0.047)。在半卵圆中心的白质中观察到较小的体积应变 (0.28·10-3 (0-0.59·10-3) 和 -0.06·10-3 (-0.17·10-3-0.20·10-3) ),这仅对心跳显着(分别为 p = 0.02 和 p = 0.7)。此外,心跳引起的体积应变大约是呼吸引起的体积应变的三倍。这项技术为人类大脑清除系统的驱动力打开了一扇窗。心跳引起的体积应变大约是呼吸引起的体积应变的三倍。这项技术为人类大脑清除系统的驱动力打开了一扇窗。心跳引起的体积应变大约是呼吸引起的体积应变的三倍。这项技术为人类大脑清除系统的驱动力打开了一扇窗。
更新日期:2020-04-01
down
wechat
bug