当前位置: X-MOL 学术Coast. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Near-reef and nearshore tropical cyclone wave climate in the Great Barrier Reef with and without reef structure
Coastal Engineering ( IF 4.4 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.coastaleng.2020.103652
David P. Callaghan , Peter J. Mumby , Matthew S. Mason

Abstract The Great Barrier Reef (GBR) coral coverage is in rapid decline from severe and sustained pressures from lagoon water quality, crown-of-thorns starfish (COTS), coral bleaching, tropical cyclones, pollution and diseases. The two recent GBR coral bleaching events (2016–2017) lead to Great Barrier Reef Marine Park Authority (GBRMPA) shifting their focus from passive management to active intervention (Great Barrier Reef Blueprint for resilience by GBRMPA). These active interventions, potentially able to increase GBR resilience, as there are reefs that, due to their physical location relative to all other reefs, river and estuary entrances, ocean currents, have favourable coral growth conditions. To undertake such interventions, various information is required including tropical cyclone wave climates. This paper develops tropical cyclone wave climates for the entire GBR. These wave climates were developed by simulating several thousand synthetic cyclones derived from the “HadGEM” general circulation model with RCP8.5 climate change scenario. The synthetic cyclones adopted herein include the following climate changes assessed by comparing averages of key forcing parameters between 1950 to 1999 and 2050 to 2099. Their average arrival rate increases from 2.25 to 2.41 cyclones/year and their average maximum wind speed increases from 24 to 28 m/s. Their average radius to maximum winds remains constant at 51 km. Two key challenges were resolved, namely, long runtimes and large files (600 m grid increment covering 1800 km by 280 km). Runtimes were reduced by excluding cyclones where their wind speeds over the entire event never exceeded 10 m/s within GBR itself or within 100 km of the GBR over water. Maximum wave heights were compared with an extended fetch empirical expression, which was based on satellite data of tropical cyclones in open waters, when cyclones were outside the GBR lagoon. These comparisons indicate that predicted wave heights have a lower bias using default wave generation parameters when compared with the extended fetch empirical expression. Prediction uncertainty was estimated at no more than 10% from various cyclonic wind-field models. The existing GBR reefs reduce nearshore wave or runup height by between 1.5 and 2 times compared to the no reef case. The reduction in wave or runup height was found to be minimal for 1 m sea level rise. These two findings indicate that there is more flooding potential from coral removal than SLR within the GBR lagoon.

中文翻译:

有无礁体结构的大堡礁近礁和近岸热带气旋波气候

摘要 由于泻湖水质、棘冠海星 (COTS)、珊瑚白化、热带气旋、污染和疾病造成的严重和持续压力,大堡礁 (GBR) 的珊瑚覆盖率正在迅速下降。最近的两次 GBR 珊瑚白化事件(2016-2017 年)导致大堡礁海洋公园管理局 (GBRMPA) 将重点从被动管理转向主动干预(GBRMPA 的大堡礁恢复力蓝图)。这些积极的干预措施有可能提高 GBR 的复原力,因为有些珊瑚礁由于其相对于所有其他珊瑚礁、河流和河口入口、洋流的物理位置,具有有利的珊瑚生长条件。为了进行此类干预,需要各种信息,包括热带气旋波气候。本文开发了整个 GBR 的热带气旋波气候。这些波浪气候是通过使用 RCP8.5 气候变化情景模拟源自“HadGEM”大气环流模型的数千个合成气旋而开发的。本文采用的合成气旋包括通过比较 1950 年至 1999 年和 2050 年至 2099 年间关键强迫参数的平均值来评估的以下气候变化。它们的平均到达率从每年 2.25 次增加到 2.41 次,平均最大风速从 24 次增加到 28 次小姐。它们的平均最大风速半径保持不变,为 51 公里。解决了两个关键挑战,即长运行时间和大文件(600 m 网格增量覆盖 1800 公里乘 280 公里)。通过排除在整个事件中风速在 GBR 本身内或 GBR 100 公里范围内从不超过 10 m/s 的气旋,减少了运行时间。当气旋在 GBR 泻湖之外时,最大波高与扩展的获取经验表达式进行了比较,该表达式基于开阔水域热带气旋的卫星数据。这些比较表明,与扩展提取经验表达式相比,使用默认波浪生成参数预测的波浪高度具有较低的偏差。各种气旋风场模型的预测不确定性估计不超过 10%。与没有珊瑚礁的情况相比,现有的 GBR 珊瑚礁将近岸波浪或上升高度降低了 1.5 到 2 倍。发现海平面上升 1 m 时波浪或爬升高度的减少最小。
更新日期:2020-04-01
down
wechat
bug