当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lower Bounds Against Sparse Symmetric Functions of ACC Circuits: Expanding the Reach of $\#$SAT Algorithms
arXiv - CS - Computational Complexity Pub Date : 2020-01-21 , DOI: arxiv-2001.07788
Nikhil Vyas, Ryan Williams

We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in $\text{Quasi-NP} = \text{NTIME}[n^{(\log n)^{O(1)}}]$ and $\text{NEXP}$ do not have small circuits from various circuit classes ${\cal C}$, by showing that ${\cal C}$ admits non-trivial satisfiability and/or $\#$SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of non-trivial $\#$SAT algorithm for a circuit class ${\mathcal C}$. Say a symmetric Boolean function $f(x_1,\ldots,x_n)$ is sparse if it outputs $1$ on $O(1)$ values of $\sum_i x_i$. We show that for every sparse $f$, and for all "typical" ${\cal C}$, faster $\#$SAT algorithms for ${\cal C}$ circuits actually imply lower bounds against the circuit class $f \circ {\cal C}$, which may be stronger than ${\cal C}$ itself. In particular: $\#$SAT algorithms for $n^k$-size ${\cal C}$-circuits running in $2^n/n^k$ time (for all $k$) imply $\text{NEXP}$ does not have $f \circ {\cal C}$-circuits of polynomial size. $\#$SAT algorithms for $2^{n^{\epsilon}}$-size ${\cal C}$-circuits running in $2^{n-n^{\epsilon}}$ time (for some $\epsilon > 0$) imply $\text{Quasi-NP}$ does not have $f \circ {\cal C}$-circuits of polynomial size. Applying $\#$SAT algorithms from the literature, one immediate corollary of our results is that $\text{Quasi-NP}$ does not have $\text{EMAJ} \circ \text{ACC}^0 \circ \text{THR}$ circuits of polynomial size, where $\text{EMAJ}$ is the "exact majority" function, improving previous lower bounds against $\text{ACC}^0$ [Williams JACM'14] and $\text{ACC}^0 \circ \text{THR}$ [Williams STOC'14], [Murray-Williams STOC'18]. This is the first nontrivial lower bound against such a circuit class.

中文翻译:

ACC 电路稀疏对称函数的下界:扩展 $\#$SAT 算法的范围

我们继续通过电路可满足性算法证明电路下界的程序。到目前为止,这个程序已经产生了几个具体的结果,证明了 $\text{Quasi-NP} = \text{NTIME}[n^{(\log n)^{O(1)}}]$ 和 $ \text{NEXP}$ 没有来自各种电路类 ${\cal C}$ 的小电路,通过证明 ${\cal C}$ 承认非平凡的可满足性和/或 $\#$SAT 算法击败穷举少量搜索。在本文中,我们为电路类 ${\mathcal C}$ 提出了非平凡 $\#$SAT 算法的新的强下界结果。假设对称布尔函数 $f(x_1,\ldots,x_n)$ 是稀疏的,如果它在 $\sum_i x_i$ 的 $O(1)$ 值上输出 $1$。我们证明,对于每个稀疏的 $f$,以及所有“典型的”${\cal C}$,${\cal C}$ 电路的更快 $\#$SAT 算法实际上意味着电路类 $f \circ {\cal C}$ 的下限,这可能比 ${\cal C}$ 本身更强。特别是:$n^k$-size ${\cal C}$-circuits 的 $\#$SAT 算法在 $2^n/n^k$ 时间内运行(对于所有 $k$)意味着 $\text{NEXP }$ 没有多项式大小的 $f \circ {\cal C}$-电路。$\#$SAT 算法用于 $2^{n^{\epsilon}}$-size ${\cal C}$-circuits 在 $2^{nn^{\epsilon}}$ 时间内运行(对于某些 $\epsilon > 0$) 意味着 $\text{Quasi-NP}$ 没有多项式大小的 $f \circ {\cal C}$ 电路。应用文献中的 $\#$SAT 算法,我们结果的一个直接推论是 $\text{Quasi-NP}$ 没有 $\text{EMAJ} \circ \text{ACC}^0 \circ \text {THR}$ 多项式大小的电路,其中 $\text{EMAJ}$ 是“精确多数”函数,改进先前针对 $\text{ACC}^0$ [Williams JACM'14] 和 $\text{ACC}^0 \circ \text{THR}$ [Williams STOC'14], [Murray-Williams STOC' 的下限18]。这是针对此类电路类的第一个非平凡下界。
更新日期:2020-01-23
down
wechat
bug