当前位置: X-MOL 学术Estuar. Coasts › 论文详情
Combining Low-Cost Sonar and High-Precision Global Navigation Satellite System for Shallow Water Bathymetry
Estuaries and Coasts ( IF 2.686 ) Pub Date : 2020-01-22 , DOI: 10.1007/s12237-020-00703-6
A. Bio, J. A. Gonçalves, A. Magalhães, J. Pinheiro, L. Bastos

Abstract Periodic bathymetry surveys are essential to provide data to keep navigation charts updated, obtain insights into water body bottom dynamics and processes, and for hydrodynamic modelling. Frequent bathymetry monitoring has become particularly important in a time of climate variability, which may affect hydrodynamics in yet unknown ways. Bathymetric data are, however, often scarce, because surveys are generally time consuming, expensive and complicated. A methodology combining a low-cost single beam sonar with a dual-frequency differential high-precision GNSS (Global Navigation Satellite System) is presented. Sonar depth measurements and GNSS positions were integrated optimizing sonar and GNSS track overlay. As a result, no physical, electronic link between both devices is needed, and precise positions and depths can be obtained without the need to apply the approach based on tide correction, which always introduces some uncertainty. The methodology was successfully tested and validated, with data collected inside an estuary and offshore the estuarine inlet. Vertical accuracies, assessed at track crossings and on locations of known depths, showed mean squared errors of about 20 cm, suggesting that the method is reliable in providing bathymetric data that satisfy the highest standards of the IHO for hydrographic surveys. Validation results suggest that the effects of boat pitch, roll and yaw on depth measurements were negligible in our survey, which covered depths between 0.4 and 24.5 m below MSL and were carried out in quite calm waters, though larger errors occurred in the off-shore zone. The use of an inertial measurement unit (IMU), which can easily be coupled with the GNSS to extract ship motion data and correct depths accordingly, is advised for less optimal survey conditions and deeper waters. The proposed method is accurate, simple and affordable, allowing for more frequent surveys and a better coverage of dynamic shallow water systems such as rivers and estuaries.
更新日期:2020-01-23

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug