当前位置: X-MOL 学术J. Mol. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Amplitude Effects Allow Short Jet Lags and Large Seasonal Phase Shifts in Minimal Clock Models.
Journal of Molecular Biology ( IF 5.6 ) Pub Date : 2020-01-21 , DOI: 10.1016/j.jmb.2020.01.014
Bharath Ananthasubramaniam 1 , Christoph Schmal 2 , Hanspeter Herzel 1
Affiliation  

Mathematical models of varying complexity have helped shed light on different aspects of circadian clock function. In this work, we question whether minimal clock models (Goodwin models) are sufficient to reproduce essential phenotypes of the clock: a small phase response curve (PRC), fast jet lag, and seasonal phase shifts. Instead of building a single best model, we take an approach where we study the properties of a set of models satisfying certain constraints; here, a 1h-pulse PRC with a range of 3h and clock periods between 22h and 26h is designed. Surprisingly, almost all these randomly parameterized models showed a 4h change in phase of entrainment between long and short days and jet lag durations of three to seven days in advance and delay. Moreover, intrinsic clock period influenced jet lag duration and entrainment amplitude and phase. Fast jet lag was realized in this model by means of an interesting amplitude effect: the association between clock amplitude and clock period termed "twist." This twist allows amplitude changes to speed up and slow down clocks enabling faster shifts. These findings were robust to the addition of positive feedback to the model. In summary, the known design principles of rhythm generation - negative feedback, long delay, and switch-like inhibition (we review these in detail) - are sufficient to reproduce the essential clock phenotypes. Furthermore, amplitudes play a role in determining clock properties and must be always considered, although they are difficult to measure.

中文翻译:

振幅效应允许在最小时钟模型中出现短时滞和较大的季节性相移。

复杂程度各不相同的数学模型有助于阐明昼夜节律时钟功能的不同方面。在这项工作中,我们质疑最小时钟模型(Goodwin模型)是否足以重现时钟的基本表型:小的相位响应曲线(PRC),快速的时差和季节性的相移。我们没有建立一个最佳模型,而是采用一种方法研究一组满足某些约束的模型的属性。在这里,设计了一个1h脉冲PRC,其范围为3h,时钟周期在22h和26h之间。出乎意料的是,几乎所有这些随机参数化的模型都显示出在长日和短日之间的夹带阶段发生了4小时变化,并且时差持续时间提前了3至7天。此外,固有时钟周期影响时差持续时间以及夹带振幅和相位。在该模型中,通过一个有趣的幅度效应实现了快速时差反应:时钟幅度与时钟周期之间的关联称为“扭曲”。这种扭曲允许幅度变化以加快和降低时钟速度,从而实现更快的移位。这些发现对于向模型中添加正面反馈是有力的。总之,节奏的已知设计原理-负反馈,长时间延迟和类似开关的抑制(我们将详细介绍)-足以再现基本的时钟表型。此外,振幅在确定时钟特性方面起着作用,尽管很难测量,但必须始终加以考虑。这种扭曲允许幅度变化以加快和降低时钟速度,从而实现更快的移位。这些发现对于向模型中添加正面反馈是有力的。总之,节奏的已知设计原理-负反馈,长时间延迟和类似开关的抑制(我们将详细介绍)-足以重现基本的时钟表型。此外,振幅在确定时钟特性方面起着作用,尽管很难测量,但必须始终加以考虑。这种扭曲允许幅度变化以加快和降低时钟速度,从而实现更快的移位。这些发现对于向模型中添加正面反馈是有力的。总之,节奏的已知设计原理-负反馈,长时间延迟和类似开关的抑制(我们将详细介绍)-足以重现基本的时钟表型。此外,振幅在确定时钟特性方面起着作用,尽管很难测量,但必须始终加以考虑。以及类似开关的抑制作用(我们将详细介绍)-足以重现基本的时钟表型。此外,振幅在确定时钟特性方面起着作用,尽管很难测量,但必须始终加以考虑。以及类似开关的抑制作用(我们将详细介绍)-足以重现基本的时钟表型。此外,振幅在确定时钟特性方面起着作用,尽管很难测量,但必须始终加以考虑。
更新日期:2020-01-21
down
wechat
bug