当前位置: X-MOL 学术Chemosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facilitated bioreduction of nitrobenzene by lignite acting as low-cost and efficient electron shuttle.
Chemosphere ( IF 8.8 ) Pub Date : 2020-01-22 , DOI: 10.1016/j.chemosphere.2020.125978
Guangfei Liu 1 , Bin Dong 1 , Jiti Zhou 1 , Juanjuan Li 2 , Ruofei Jin 1 , Jing Wang 1
Affiliation  

The searching for efficient and economical redox mediators to promote the treatment of wastewater containing recalcitrant organic compounds is greatly needed. In this study, the redox mediator activities of four different lignite samples to facilitate the bioreduction of nitrobenzene by Shewanella oneidensis MR-1 were tested for the first time. The initial nitrobenzene reduction rate was increased by 40.4%-90.3% in the presence of 50 mg/L of different lignite samples. Lignite collected from Xinjiang (XJL) having more oxygenated groups performed better in enhancing nitrobenzene bioreduction. The stimulating effects increased with the increase of lignite dosage (0-200 mg/L) and the decrease of lignite particle size (150-0.1 μm). However, the pristine XJL samples with assorted sizes of particles exhibited better stimulating effects than size-fractionated ones, implying that different-sized XJL particles might have synergetic effects on the bioreduction process. When humic acid or iron was removed from XJL, its promoting effects were decreased, demonstrating the crucial roles of both components in lignite-enhanced nitrobenzene bioreduction. Nitric acid treatment could form more oxygenated moieties on lignite surface, which played vital roles in promoting nitrobenzene bioreduction. The initial nitrobenzene bioreduction rate in the presence of HNO3-treated XJL was 80.8% higher than that obtained with pristine XJL. This study proposed an effective and readily available redox mediator that could be applied to promote the bioreduction of recalcitrant electrophilic pollutants.
更新日期:2020-01-22
down
wechat
bug