当前位置: X-MOL 学术arXiv.cs.IT › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterization of Conditional Independence and Weak Realizations of Multivariate Gaussian Random Variables: Applications to Networks
arXiv - CS - Information Theory Pub Date : 2020-01-19 , DOI: arxiv-2001.06824
Charalambos D. Charalambous and Jan H. van Schuppen

The Gray and Wyner lossy source coding for a simple network for sources that generate a tuple of jointly Gaussian random variables (RVs) $X_1 : \Omega \rightarrow {\mathbb R}^{p_1}$ and $X_2 : \Omega \rightarrow {\mathbb R}^{p_2}$, with respect to square-error distortion at the two decoders is re-examined using (1) Hotelling's geometric approach of Gaussian RVs-the canonical variable form, and (2) van Putten's and van Schuppen's parametrization of joint distributions ${\bf P}_{X_1, X_2, W}$ by Gaussian RVs $W : \Omega \rightarrow {\mathbb R}^n $ which make $(X_1,X_2)$ conditionally independent, and the weak stochastic realization of $(X_1, X_2)$. Item (2) is used to parametrize the lossy rate region of the Gray and Wyner source coding problem for joint decoding with mean-square error distortions ${\bf E}\big\{||X_i-\hat{X}_i||_{{\mathbb R}^{p_i}}^2 \big\}\leq \Delta_i \in [0,\infty], i=1,2$, by the covariance matrix of RV $W$. From this then follows Wyner's common information $C_W(X_1,X_2)$ (information definition) is achieved by $W$ with identity covariance matrix, while a formula for Wyner's lossy common information (operational definition) is derived, given by $C_{WL}(X_1,X_2)=C_W(X_1,X_2) = \frac{1}{2} \sum_{j=1}^n \ln \left( \frac{1+d_j}{1-d_j} \right),$ for the distortion region $ 0\leq \Delta_1 \leq \sum_{j=1}^n(1-d_j)$, $0\leq \Delta_2 \leq \sum_{j=1}^n(1-d_j)$, and where $1 > d_1 \geq d_2 \geq \ldots \geq d_n>0$ in $(0,1)$ are {\em the canonical correlation coefficients} computed from the canonical variable form of the tuple $(X_1, X_2)$. The methods are of fundamental importance to other problems of multi-user communication, where conditional independence is imposed as a constraint.

中文翻译:

条件独立性的表征和多元高斯随机变量的弱实现:在网络中的应用

第(2)项用于参数化Gray和Wyner源编码问题的有损率区域,用于均方误差失真${\bf E}\big\{||X_i-\hat{X}_i|的联合解码|_{{\mathbb R}^{p_i}}^2 \big\}\leq \Delta_i \in [0,\infty], i=1,2$,由 RV $W$ 的协方差矩阵。据此,Wyner 的公共信息 $C_W(X_1,X_2)$(信息定义)由具有恒等协方差矩阵的 $W$ 实现,同时推导出 Wyner 的有损公共信息(操作定义)的公式,由 $C_{ WL}(X_1,X_2)=C_W(X_1,X_2) = \frac{1}{2} \sum_{j=1}^n \ln \left( \frac{1+d_j}{1-d_j} \右),$ 为畸变区域 $ 0\leq \Delta_1 \leq \sum_{j=1}^n(1-d_j)$, $0\leq \Delta_2 \leq \sum_{j=1}^n(1 -d_j)$,其中 $1 > d_1 \geq d_2 \geq \ldots \geq d_n>0$ in $(0, 1)$ 是从元组 $(X_1, X_2)$ 的规范变量形式计算的{\em 规范相关系数}。这些方法对于多用户通信的其他问题至关重要,其中条件独立性被强加为约束。
更新日期:2020-01-22
down
wechat
bug