当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photoactivated Artificial Molecular Machines that Can Perform Tasks.
Advanced Materials ( IF 29.4 ) Pub Date : 2020-01-20 , DOI: 10.1002/adma.201906064
Stefano Corra 1 , Massimiliano Curcio 1 , Massimo Baroncini 1 , Serena Silvi 2 , Alberto Credi 1
Affiliation  

Research on artificial photoactivated molecular machines has moved in recent years from a basic scientific endeavor toward a more applicative effort. Nowadays, the prospect of reproducing the operation of natural nanomachines with artificial counterparts is no longer a dream but a concrete possibility. The progress toward the construction of molecular-machine-based devices and materials in which light irradiation results in the execution of a task as a result of nanoscale movements is illustrated here. After a brief description of a few basic types of photoactivated molecular machines, significant examples of their exploitation to perform predetermined functions are presented. These include switchable catalysts, nanoactuators that interact with cellular membranes, transporters of small molecular cargos, and active joints capable of mechanically coupling molecular-scale movements. Investigations aimed at harnessing the collective operation of a multitude of molecular machines organized in arrays to perform tasks at the microscale and macroscale in hard and soft materials are also reviewed. Surfaces, gels, liquid crystals, polymers, and self-assembled nanostructures are described wherein the nanoscale movement of embedded molecular machines is amplified, allowing the realization of muscle-like actuators, microfluidic devices, and polymeric materials for light energy transduction and storage.

中文翻译:

可以执行任务的光活化人工分子机器。

近年来,对人造光活化分子机器的研究已从基本的科学工作转向更加实用的工作。如今,用人工对应物重现天然纳米机器操作的前景不再是梦想,而是一种具体的可能性。在此说明了分子机器基设备和材料的建设进展,其中光辐射由于纳米运动而导致执行任务。在简要介绍了几种基本类型的光活化分子机器之后,给出了利用它们来执行预定功能的重要示例。其中包括可转换的催化剂,与细胞膜相互作用的纳米致动器,小分子货物的转运蛋白,以及能够机械耦合分子尺度运动的主动关节。还审查了旨在利用以阵列形式组织的大量分子机器的集体操作以在硬和软材料中从微观和宏观执行任务的研究。描述了表面,凝胶,液晶,聚合物和自组装的纳米结构,其中嵌入式分子机器的纳米级运动得到了放大,从而可以实现类似肌肉的致动器,微流体装置以及用于光能传导和存储的聚合材料。
更新日期:2020-01-20
down
wechat
bug