当前位置: X-MOL 学术Microbiome › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants.
Microbiome ( IF 15.5 ) Pub Date : 2020-01-18 , DOI: 10.1186/s40168-019-0775-6
Yan Chen 1 , Michael Bonkowski 2, 3 , Yi Shen 4 , Bryan S Griffiths 5 , Yuji Jiang 1 , Xiaoyue Wang 1 , Bo Sun 1
Affiliation  

BACKGROUND Stress-induced hormones are essential for plants to modulate their microbiota and dynamically adjust to the environment. Despite the emphasis of the role of the phytohormone ethylene in the plant physiological response to heterospecific neighbour detection, less is known about how this activated signal mediates focal plant rhizosphere microbiota to enhance plant fitness. Here, using 3 years of peanut (Arachis hypogaea L.), a legume, and cyanide-containing cassava (Manihot esculenta Crantz) intercropping and peanut monocropping field, pot and hydroponic experiments in addition to exogenous ethylene application and soil incubation experiments, we found that ethylene, a cyanide-derived signal, is associated with the chemical identification of neighbouring cassava and the microbial re-assemblage in the peanut rhizosphere. RESULTS Ethylene production in peanut roots can be triggered by cyanide production of neighbouring cassava plants. This gaseous signal alters the microbial composition and re-assembles the microbial co-occurrence network of peanut by shifting the abundance of an actinobacterial species, Catenulispora sp., which becomes a keystone in the intercropped peanut rhizosphere. The re-assembled rhizosphere microbiota provide more available nutrients to peanut roots and support seed production. CONCLUSIONS Our findings suggest that root ethylene acts as a signal with a dual role. It plays a role in perceiving biochemical cues from interspecific neighbours, and also has a regulatory function in mediating the rhizosphere microbial assembly, thereby enhancing focal plant fitness by improving seed production. This discovery provides a promising direction to develop novel intercropping strategies for targeted manipulations of the rhizosphere microbiome through phytohormone signals. Video abstract.

中文翻译:

当化学检测邻近植物产生的氰化物时,根乙烯介导根际微生物群落重建。

背景技术应激诱导的激素对于植物调节微生物群和动态适应环境至关重要。尽管强调植物激素乙烯在植物对异特异性邻居检测的生理反应中的作用,但人们对这种激活信号如何介导焦点植物根际微生物群以增强植物适应性的了解较少。在这里,通过3年的豆科花生(ArachishypogaeaL.)和含氰木薯(ManihotesculentaCrantz)间作和花生单作田间、盆栽和水培实验,以及外源乙烯施用和土壤培育实验,我们发现乙烯是一种氰化物衍生的信号,与邻近木薯的化学识别和花生根际微生物的重新组合有关。结果 花生根部乙烯的产生可能是由邻近木薯植物产生的氰化物引发的。这种气体信号通过改变放线菌种类链孢菌的丰度来改变微生物组成并重新组装花生的微生物共生网络,链孢菌成为间作花生根际的基石。重新组装的根际微生物群为花生根提供更多可用营养并支持种子生产。结论我们的研究结果表明根乙烯作为具有双重作用的信号。它在感知来自种间邻居的生化信号方面发挥着作用,并且还具有介导根际微生物组装的调节功能,从而通过提高种子产量来增强焦点植物的适应性。这一发现为开发新的间作策略提供了一个有希望的方向,通过植物激素信号有针对性地操纵根际微生物组。视频摘要。
更新日期:2020-01-21
down
wechat
bug