当前位置: X-MOL 学术Pattern Recogn. › 论文详情
MIMN-DPP: Maximum-Information and Minimum-Noise Determinantal Point Processes for Unsupervised Hyperspectral Band Selection
Pattern Recognition ( IF 7.196 ) Pub Date : 2020-01-21 , DOI: 10.1016/j.patcog.2020.107213
Weizhao Chen; Zhijing Yang; Jinchang Ren; Jiangzhong Cao; Nian Cai; Huimin Zhao; Peter Yuen

Band selection plays an important role in hyperspectral imaging for reducing the data and improving the efficiency of data acquisition and analysis whilst significantly lowering the cost of the imaging system. Without the category labels, it is challenging to select an effective and low-redundancy band subset. In this paper, a new unsupervised band selection algorithm is proposed based on a new band search criterion and an improved Determinantal Point Processes (DPP). First, to preserve the original information of hyperspectral image, a novel band search criterion is designed for searching the bands with high information entropy and low noise. Unfortunately, finding the optimal solution based on the search criteria to select a low-redundancy band subset is a NP-hard problem. To solve this problem, we consider the correlation of bands from both original hyperspectral image and its spatial information to construct a double-graph model to describe the relationship between spectral bands. Besides, an improved DPP algorithm is proposed for the approximate search of a low-redundancy band subset from the double-graph model. Experiment results on several well-known datasets show that the proposed optical band selection algorithm achieves better performance than many other state-of-the-art methods.

更新日期:2020-01-21

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug