当前位置: X-MOL 学术Pattern Recogn. › 论文详情
MIMN-DPP: Maximum-Information and Minimum-Noise Determinantal Point Processes for Unsupervised Hyperspectral Band Selection
Pattern Recognition ( IF 5.898 ) Pub Date : 2020-01-21 , DOI: 10.1016/j.patcog.2020.107213
Weizhao Chen; Zhijing Yang; Jinchang Ren; Jiangzhong Cao; Nian Cai; Huimin Zhao; Peter Yuen

Band selection plays an important role in hyperspectral imaging for reducing the data and improving the efficiency of data acquisition and analysis whilst significantly lowering the cost of the imaging system. Without the category labels, it is challenging to select an effective and low-redundancy band subset. In this paper, a new unsupervised band selection algorithm is proposed based on a new band search criterion and an improved Determinantal Point Processes (DPP). First, to preserve the original information of hyperspectral image, a novel band search criterion is designed for searching the bands with high information entropy and low noise. Unfortunately, finding the optimal solution based on the search criteria to select a low-redundancy band subset is a NP-hard problem. To solve this problem, we consider the correlation of bands from both original hyperspectral image and its spatial information to construct a double-graph model to describe the relationship between spectral bands. Besides, an improved DPP algorithm is proposed for the approximate search of a low-redundancy band subset from the double-graph model. Experiment results on several well-known datasets show that the proposed optical band selection algorithm achieves better performance than many other state-of-the-art methods.
更新日期:2020-01-21

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug