当前位置: X-MOL 学术Compos. Math. › 论文详情
On the $K(\unicode[STIX]{x1D70B},1)$ -problem for restrictions of complex reflection arrangements
Compositio Mathematica ( IF 1.301 ) Pub Date : 2020-01-20 , DOI: 10.1112/s0010437x19007796
Nils Amend; Pierre Deligne; Gerhard Röhrle

Let $W\subset \operatorname{GL}(V)$ be a complex reflection group and $\mathscr{A}(W)$ the set of the mirrors of the complex reflections in  $W$ . It is known that the complement $X(\mathscr{A}(W))$ of the reflection arrangement $\mathscr{A}(W)$ is a $K(\unicode[STIX]{x1D70B},1)$ space. For $Y$ an intersection of hyperplanes in $\mathscr{A}(W)$ , let $X(\mathscr{A}(W)^{Y})$ be the complement in $Y$ of the hyperplanes in $\mathscr{A}(W)$ not containing  $Y$ . We hope that $X(\mathscr{A}(W)^{Y})$ is always a $K(\unicode[STIX]{x1D70B},1)$ . We prove it in case of the monomial groups $W=G(r,p,\ell )$ . Using known results, we then show that there remain only three irreducible complex reflection groups, leading to just eight such induced arrangements for which this $K(\unicode[STIX]{x1D70B},1)$ property remains to be proved.
更新日期:2020-02-06

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug