当前位置: X-MOL 学术Appl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A concentrating solar power system integrated photovoltaic and mid-temperature solar thermochemical processes
Applied Energy ( IF 11.2 ) Pub Date : 2020-01-16 , DOI: 10.1016/j.apenergy.2019.114421
Wanjun Qu , Xueli Xing , Yali Cao , Taixiu Liu , Hui Hong , Hongguang Jin

The approach of cascading solar energy utilization provides access to reliable and ample supplies of energy and has thus attracted widespread attention. Currently, the hybridization of a concentrating solar photovoltaic process and a solar thermochemical process is a promising approach. This paper describes and investigates a concentrating solar power system to harvest solar energy. Co-producing photovoltaic electricity and solar thermal fuel is its attractive distinction. The visible spectrum is cast onto concentrating photovoltaics to generate electricity, and the ultraviolet and infrared spectra are used to drive methanol decomposition at approximately 250 °C. A spectral splitting parabolic trough concentrator is developed in which incident solar radiation is first split and then concentrated. Based on the measured optical data of concentrators, photovoltaics and reactor, the solar-to-electricity performance is evaluated in the proposed system. The results show that a satisfied solar-to-electricity efficiency of approximately 31.8% would be realized if monocrystalline silicon photovoltaics is adopted. In comparison to individual systems, the efficiency enhancements of about 15.3% and 6.3% are obtained. The solar-to-electricity efficiency can reach approximately 35.1% by adopting gallium arsenide. Meanwhile, the improved optical performance proves that the approach of first splitting and then concentrating sunlight is feasible and promising. Finally, the results are anticipated to lead to a new approach for improving full-spectrum solar energy utilization and guiding the establishment of a prototype in the near future.



中文翻译:

集成光伏和中温太阳能热化学工艺的集中式太阳能发电系统

级联利用太阳能的方法提供了可靠而充足的能源供应,因此引起了广泛的关注。当前,集中太阳能光伏工艺和太阳能热化学工艺的混合是有前途的方法。本文描述并研究了一种用于收集太阳能的聚光太阳能系统。联合生产光伏电力和太阳热能燃料是其吸引人的区别。可见光谱被投射到聚光光伏上以发电,而紫外和红外光谱则被用于驱动甲醇在大约250°C分解。开发了一种光谱分裂抛物线形槽式聚光器,其中入射的太阳辐射首先被分裂然后集中。根据测得的集中器光学数据,光伏和反应堆,在建议的系统中评估了太阳能发电性能。结果表明,如果采用单晶硅光伏电池,将可实现约31.8%的满意的太阳能发电效率。与单个系统相比,效率提高了约15.3%和6.3%。通过采用砷化镓,太阳能发电效率可以达到约35.1%。同时,改进的光学性能证明了先分解再聚光的方法是可行和有前途的。最后,预期结果将导致一种新方法,以改善全光谱太阳能利用率并在不久的将来指导建立原型。在提出的系统中评估了太阳能发电性能。结果表明,如果采用单晶硅光伏电池,将可实现约31.8%的满意的太阳能发电效率。与单个系统相比,效率提高了约15.3%和6.3%。通过采用砷化镓,太阳能发电效率可以达到约35.1%。同时,改进的光学性能证明了先分解再聚光的方法是可行和有前途的。最后,预期结果将导致一种新方法,以改善全光谱太阳能利用率并在不久的将来指导建立原型。在提出的系统中评估了太阳能发电性能。结果表明,如果采用单晶硅光伏电池,将可实现约31.8%的满意的太阳能发电效率。与单个系统相比,效率提高了约15.3%和6.3%。通过采用砷化镓,太阳能发电效率可以达到约35.1%。同时,改进的光学性能证明了先分解再聚光的方法是可行和有前途的。最后,预期结果将导致一种新方法,以改善全光谱太阳能利用率并在不久的将来指导建立原型。结果表明,如果采用单晶硅光伏电池,将可实现约31.8%的满意的太阳能发电效率。与单个系统相比,效率提高了约15.3%和6.3%。通过采用砷化镓,太阳能发电效率可以达到约35.1%。同时,改进的光学性能证明了先分解再聚光的方法是可行和有前途的。最后,预期结果将导致一种新方法,以改善全光谱太阳能利用率并在不久的将来指导建立原型。结果表明,如果采用单晶硅光伏电池,将可实现约31.8%的满意的太阳能发电效率。与单个系统相比,效率提高了约15.3%和6.3%。通过采用砷化镓,太阳能发电效率可以达到约35.1%。同时,改进的光学性能证明了先分解再聚光的方法是可行和有前途的。最后,预期结果将导致一种新方法,以改善全光谱太阳能利用率并在不久的将来指导建立原型。获得3%和6.3%。通过采用砷化镓,太阳能发电效率可以达到约35.1%。同时,改进的光学性能证明了先分解再聚光的方法是可行和有前途的。最后,预期结果将导致一种新方法,以改善全光谱太阳能利用率并在不久的将来指导建立原型。获得3%和6.3%。通过采用砷化镓,太阳能发电效率可以达到约35.1%。同时,改进的光学性能证明了先分解再聚光的方法是可行和有前途的。最后,预期结果将导致一种新方法,以改善全光谱太阳能利用率并在不久的将来指导建立原型。

更新日期:2020-01-17
down
wechat
bug