当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Detection of SQL injection based on artificial neural network
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-01-16 , DOI: 10.1016/j.knosys.2020.105528
Peng Tang; Weidong Qiu; Zheng Huang; Huijuan Lian; Guozhen Liu

The SQL injection, a common web attack, has been a challenging network security issue which causes annually millions of dollars of financial loss worldwide as well as a large amount of users’ privacy data leakage. This work presents a high accuracy SQL injection detection method based on neural network. We first acquire authentic user URL access log data from the Internet Service Provider(ISP), ensuring that our approach is real, effective and practical. We then conduct statistical research on normal data and SQL injection data. Based on the statistical results, we design eight types of features and train an MLP model. The accuracy of the model maintains over 99%. Meanwhile, we compare and evaluate the training effect of other machine learning algorithms(LSTM, for example), the results reveal that the accuracy of our method is superior to the relevant machine learning algorithms.
更新日期:2020-01-17

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug