当前位置: X-MOL 学术Mater. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxygen defect-rich In-doped ZnO nanostructure for enhanced visible light photocatalytic activity
Materials Chemistry and Physics ( IF 4.6 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.matchemphys.2020.122672
Yan Yu , Binghua Yao , Yangqing He , Baoyue Cao , Wei Ma , Liangliang Chang

Abstract Developing high-efficiency photocatalyst for the degradation of environmental pollutants under visible light is ideal. In this study, indium-doped zinc oxide with rich oxygen vacancy defects (In–OV–ZnO) was successfully fabricated by using a facile solution method followed by annealing process. The morphological, structural, and optical properties of the as-synthesized samples were studied. The X-ray diffraction measurements revealed the positions of the main peaks in the synthesized samples with In3+ ions and oxygen vacancies were slightly shifted. The analysis of SEM and TEM showed that the In–OV–ZnO samples were in the nanoscale regime (20-50 nm) with hexagonal crystalline morphology. The UV–vis DRS spectra showed that In–OV–ZnO samples had the band gap value of 3.14 eV. Based on photocurrent analysis and photoluminescence studies, the oxygen vacancy of In–OV–ZnO favored the electron–hole pairs’ separation. Photocatalytic studies revealed that the In–OV–ZnO samples display better photocatalytic activities of methylene blue (MB) and methyl orange (MO) under visible light irradiation, which exhibited maximum degradations of 96.84% and 90.05%, respectively. The enhanced photocatalytic performance can be ascribed to the synergistic effect of the oxygen vacancy defects and the In3+ ions favoring efficient electron–hole separation, which provided several active sites. This work develops a study to enable an efficient and cost-effective design of novel photocatalysts and offers insight into the influence of surface defects in enhancing photocatalytic activity.

中文翻译:

用于增强可见光光催化活性的富氧缺陷 In 掺杂 ZnO 纳米结构

摘要 开发用于可见光下环境污染物降解的高效光催化剂是理想的选择。在这项研究中,通过使用简便的溶液方法和退火工艺成功制造了具有丰富氧空位缺陷的铟掺杂氧化锌(In-OV-ZnO)。研究了合成样品的形态、结构和光学特性。X 射线衍射测量显示合成样品中具有 In3+ 离子和氧空位的主峰的位置略有移动。SEM 和 TEM 分析表明 In-OV-ZnO 样品处于纳米级(20-50 nm),具有六方晶体形态。UV-vis DRS 光谱显示 In-OV-ZnO 样品的带隙值为 3.14 eV。基于光电流分析和光致发光研究,In-OV-ZnO 的氧空位有利于电子-空穴对的分离。光催化研究表明,In-OV-ZnO 样品在可见光照射下表现出更好的亚甲蓝 (MB) 和甲基橙 (MO) 光催化活性,最大降解率分别为 96.84% 和 90.05%。增强的光催化性能可归因于氧空位缺陷和 In3+ 离子的协同作用,有利于有效的电子 - 空穴分离,提供了几个活性位点。这项工作开展了一项研究,以实现高效且具有成本效益的新型光催化剂设计,并深入了解表面缺陷对增强光催化活性的影响。光催化研究表明,In-OV-ZnO 样品在可见光照射下表现出更好的亚甲蓝 (MB) 和甲基橙 (MO) 光催化活性,最大降解率分别为 96.84% 和 90.05%。增强的光催化性能可归因于氧空位缺陷和 In3+ 离子的协同效应,有利于有效的电子 - 空穴分离,提供了几个活性位点。这项工作开展了一项研究,以实现高效且具有成本效益的新型光催化剂设计,并深入了解表面缺陷对增强光催化活性的影响。光催化研究表明,In-OV-ZnO 样品在可见光照射下表现出更好的亚甲蓝 (MB) 和甲基橙 (MO) 光催化活性,最大降解率分别为 96.84% 和 90.05%。增强的光催化性能可归因于氧空位缺陷和 In3+ 离子的协同作用,有利于有效的电子 - 空穴分离,提供了几个活性位点。这项工作开展了一项研究,以实现高效且具有成本效益的新型光催化剂设计,并深入了解表面缺陷对增强光催化活性的影响。增强的光催化性能可归因于氧空位缺陷和 In3+ 离子的协同效应,有利于有效的电子 - 空穴分离,提供了几个活性位点。这项工作开展了一项研究,以实现高效且具有成本效益的新型光催化剂设计,并深入了解表面缺陷对增强光催化活性的影响。增强的光催化性能可归因于氧空位缺陷和 In3+ 离子的协同作用,有利于有效的电子 - 空穴分离,提供了几个活性位点。这项工作开展了一项研究,以实现高效且具有成本效益的新型光催化剂设计,并深入了解表面缺陷对增强光催化活性的影响。
更新日期:2020-04-01
down
wechat
bug