当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
Power Allocation in Cache-Aided NOMA Systems: Optimization and Deep Reinforcement Learning Approaches
IEEE Transactions on Communications ( IF 5.690 ) Pub Date : 2019-10-15 , DOI: 10.1109/tcomm.2019.2947418
Khai Nguyen Doan; Mojtaba Vaezi; Wonjae Shin; H. Vincent Poor; Hyundong Shin; Tony Q. S. Quek

This work exploits the advantages of two prominent techniques in future communication networks, namely caching and non-orthogonal multiple access (NOMA). Particularly, a system with Rayleigh fading channels and cache-enabled users is analyzed. It is shown that the caching-NOMA combination provides a new opportunity of cache hit which enhances the cache utility as well as the effectiveness of NOMA. Importantly, this comes without requiring users’ collaboration, and thus, avoids many complicated issues such as users’ privacy and security, selfishness, etc. In order to optimize users’ quality of service and, concurrently, ensure the fairness among users, the probability that all users can decode the desired signals is maximized. In NOMA, a combination of multiple messages are sent to users, and the defined objective is approached by finding an appropriate power allocation for message signals. To address the power allocation problem, two novel methods are proposed. The first one is a divide-and-conquer-based method for which closed-form expressions for the optimal resource allocation policy are derived making this method simple and flexible to the system context. The second one is based on deep reinforcement learning method that allows all users to share the full bandwidth. Finally, simulation results are provided to demonstrate the effectiveness of the proposed methods and to compare their performance.
更新日期:2020-01-17

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug