当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
Power Allocation in Cache-Aided NOMA Systems: Optimization and Deep Reinforcement Learning Approaches
IEEE Transactions on Communications ( IF 5.646 ) Pub Date : 2019-10-15 , DOI: 10.1109/tcomm.2019.2947418
Khai Nguyen Doan; Mojtaba Vaezi; Wonjae Shin; H. Vincent Poor; Hyundong Shin; Tony Q. S. Quek

This work exploits the advantages of two prominent techniques in future communication networks, namely caching and non-orthogonal multiple access (NOMA). Particularly, a system with Rayleigh fading channels and cache-enabled users is analyzed. It is shown that the caching-NOMA combination provides a new opportunity of cache hit which enhances the cache utility as well as the effectiveness of NOMA. Importantly, this comes without requiring users’ collaboration, and thus, avoids many complicated issues such as users’ privacy and security, selfishness, etc. In order to optimize users’ quality of service and, concurrently, ensure the fairness among users, the probability that all users can decode the desired signals is maximized. In NOMA, a combination of multiple messages are sent to users, and the defined objective is approached by finding an appropriate power allocation for message signals. To address the power allocation problem, two novel methods are proposed. The first one is a divide-and-conquer-based method for which closed-form expressions for the optimal resource allocation policy are derived making this method simple and flexible to the system context. The second one is based on deep reinforcement learning method that allows all users to share the full bandwidth. Finally, simulation results are provided to demonstrate the effectiveness of the proposed methods and to compare their performance.
更新日期:2020-01-17

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug