当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inhibition of Candida auris Biofilm Formation on Medical and Environmental Surfaces by Silver Nanoparticles.
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2020-01-16 , DOI: 10.1021/acsami.9b20708
Humberto H Lara 1 , Liliana Ixtepan-Turrent 2 , Miguel Jose Yacaman 3 , Jose Lopez-Ribot 1
Affiliation  

Candida auris is an emerging pathogenic fungus implicated in healthcare-associated outbreaks and causes bloodstream infections associated with high mortality rates. Biofilm formation represents one of the major pathogenetic traits associated with this microorganism. Unlike most other Candida species, C. auris has the ability to survive for weeks on different surfaces. Therefore, there is an urgent need to develop new effective control strategies to combat the threat of C. auris. Advances in nanotechnologies have emerged that carry significant potential impact against Candida biofilms. We obtained pure round silver nanoparticles (AgNPs) (1 to 3 nm in diameter) using a microwave-assisted synthetic approach. When tested against C. auris, our results indicated a potent inhibitory activity both on biofilm formation (half maximal inhibitory concentration (IC50) of 0.06 ppm) and against preformed biofilms (IC50 of 0.48 ppm). Scanning electron microscopy images of AgNP-treated biofilms showed cell wall damage mostly by disruption and distortion of the outer surface of the fungal cell wall. In subsequent experiments AgNPs were used to functionalize medical and environmental surfaces. Silicone elastomers functionalized with AgNPs demonstrated biofilm inhibition (>50%) at relatively low concentrations (2.3 to 0.28 ppm). Bandage dressings loaded with AgNPs inhibited growth of C. auris biofilms by more than 80% (2.3 to 0.017 ppm). Also, to demonstrate long-lasting protection, dressings loaded with AgNPs (0.036 ppm) were washed thoroughly with phosphate-buffered saline, maintaining protection against the C. auris growth from cycles 1 to 3 (>80% inhibition) and from cycles 4 to 6 (>50% inhibition). Our results demonstrate the dose-dependent activity of AgNPs against biofilms formed by C. auris on both medical (silicone elastomer) and environmental (bandage fibers) surfaces. The AgNPs-functionalized fibers retain the fungicidal effect even after repeated thorough washes. Overall these results point to the utility of silver nanoparticles to prevent and control infections caused by this emerging pathogenic fungus.

中文翻译:

银纳米粒子对医用和环境表面上的假丝酵母生物膜形成的抑制作用。

黄金假丝酵母是一种新兴的致病性真菌,与医疗保健相关的暴发有关,并导致与高死亡率相关的血液感染。生物膜形成代表与此微生物相关的主要致病性状之一。与大多数其他念珠菌不同,C。auris具有在不同表面上存活数周的能力。因此,迫切需要开发新的有效控制策略来对抗金龟子的威胁。纳米技术的进步已经出现,对念珠菌生物膜具有重大的潜在影响。我们使用微波辅助合成方法获得了纯圆形银纳米颗粒(AgNPs)(直径为1-3 nm)。当针对金龟子进行测试时,我们的结果表明对生物膜形成(半最大抑制浓度(IC50)为0.06 ppm)和对预先形成的生物膜(IC50为0.48 ppm)均具有有效的抑制活性。AgNP处理过的生物膜的扫描电子显微镜图像显示,细胞壁损伤主要是由真菌细胞壁外表面的破坏和扭曲引起的。在随后的实验中,AgNP被用于功能化医疗和环境表面。用AgNPs官能化的有机硅弹性体在相对较低的浓度(2.3至0.28 ppm)下表现出生物膜抑制作用(> 50%)。载有AgNPs的绷带敷料可抑制金黄色葡萄球菌生物膜的生长超过80%(2.3至0.017 ppm)。另外,为了显示持久的保护作用,用磷酸盐缓冲液彻底清洗了载有AgNPs(0.036 ppm)的敷料,在第1到第3周期(> 80%的抑制)和第4到第6周期(> 50%的抑制)中,保持对耳孢菌生长的保护。我们的结果表明,AgNPs对医用(硅氧烷弹性体)和环境(绷带纤维)表面上的毛囊假丝酵母形成的生物膜的剂量依赖性活性。即使经过反复彻底清洗,AgNPs官能化纤维仍保留了杀菌作用。总体而言,这些结果表明银纳米颗粒可用于预防和控制由这种新兴病原性真菌引起的感染。即使经过反复彻底清洗,AgNPs官能化纤维仍保留了杀菌作用。总体而言,这些结果表明银纳米颗粒可用于预防和控制由这种新兴病原性真菌引起的感染。即使经过反复彻底清洗,AgNPs官能化纤维仍保留了杀菌作用。总体而言,这些结果表明银纳米颗粒可用于预防和控制由这种新兴病原性真菌引起的感染。
更新日期:2020-01-16
down
wechat
bug