当前位置: X-MOL 学术Microchem. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical Properties of Gold Nanosheets: Investigation of the Effect of Nanosheet Thickness Using Chemometric Methods
Microchemical Journal ( IF 4.8 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.microc.2020.104650
S. Ahmadpour , M. Ajamian , J. Tashkhourian , A. Safavi , B. Hemmateenejad

Abstract Gold nanostructures have been widely studied because of their unique size and shape dependent properties. Two-dimensional (2D) Au nanosheets (AuNSs) attract much attention for their unique features and potential applications. One parameter that should be considered in their potential applications, is their thicknesses. In this study AuNSs were synthesized in three thicknesses (25 nm, 45 nm, and 65 nm), and their electrochemical properties at a glassy carbon electrode were compared. Multivariate curve resolution-alternating least squares (MCR-ALS) was used to resolve the total current to its three main constitutes, which are faradaic, step charging and induced charging currents. The extent of contribution of each current was calculated and related to the parameters affecting the electrochemical systems such as the nature of supporting electrolyte or the composition of the electrode. The results showed that the thickness of AuNSs has a significant effect on the extent of contribution of all currents. For example, the contribution of the faradaic current is higher for 25 nm thickness of AuNSs whereas the contribution of the charging current changes reversely. Our results confirmed that thinner AuNSs are more suitable for using in construction of electrochemical sensors.

中文翻译:

金纳米片的电化学性质:使用化学计量学方法研究纳米片厚度的影响

摘要 金纳米结构因其独特的尺寸和形状相关特性而被广泛研究。二维 (2D) Au 纳米片 (AuNSs) 因其独特的特性和潜在的应用而备受关注。在它们的潜在应用中应该考虑的一个参数是它们的厚度。在这项研究中,合成了三种厚度(25 nm、45 nm 和 65 nm)的 AuNS,并比较了它们在玻璃碳电极上的电化学性能。多元曲线分辨率交替最小二乘法 (MCR-ALS) 用于将总电流分解为其三个主要组成部分,即法拉第、步进充电和感应充电电流。计算每个电流的贡献程度,并与影响电化学系统的参数有关,例如支持电解质的性质或电极的组成。结果表明,AuNSs 的厚度对所有电流的贡献程度有显着影响。例如,对于 25 nm 厚度的 AuNS,法拉第电流的贡献更高,而充电电流的贡献则相反。我们的结果证实,较薄的 AuNS 更适合用于构建电化学传感器。对于 25 nm 厚度的 AuNS,法拉第电流的贡献更高,而充电电流的贡献则相反。我们的结果证实,较薄的 AuNS 更适合用于构建电化学传感器。对于 25 nm 厚度的 AuNS,法拉第电流的贡献更高,而充电电流的贡献则相反。我们的结果证实,较薄的 AuNS 更适合用于构建电化学传感器。
更新日期:2020-05-01
down
wechat
bug