当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved protein structure prediction using potentials from deep learning
Nature ( IF 64.8 ) Pub Date : 2020-01-15 , DOI: 10.1038/s41586-019-1923-7
Andrew W Senior 1 , Richard Evans 1 , John Jumper 1 , James Kirkpatrick 1 , Laurent Sifre 1 , Tim Green 1 , Chongli Qin 1 , Augustin Žídek 1 , Alexander W R Nelson 1 , Alex Bridgland 1 , Hugo Penedones 1 , Stig Petersen 1 , Karen Simonyan 1 , Steve Crossan 1 , Pushmeet Kohli 1 , David T Jones 2, 3 , David Silver 1 , Koray Kavukcuoglu 1 , Demis Hassabis 1
Affiliation  

Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)—a blind assessment of the state of the field—AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7.



中文翻译:

利用深度学习的潜力改进蛋白质结构预测

蛋白质结构预测可用于根据氨基酸序列1确定蛋白质的三维形状。这个问题至关重要,因为蛋白质的结构在很大程度上决定了它的功能2;然而,蛋白质结构可能难以通过实验确定。最近通过利用遗传信息取得了相当大的进展。可以通过分析同源序列的共变来推断哪些氨基酸残基是接触的,这有助于预测蛋白质结构3. 在这里,我们展示了我们可以训练一个神经网络来准确预测残基对之间的距离,这比接触预测传达了更多关于结构的信息。利用这些信息,我们构建了一个平均力4的势能,可以准确地描述蛋白质的形状。我们发现,可以通过简单的梯度下降算法优化产生的潜力,从而无需复杂的采样程序即可生成结构。由此产生的系统名为 AlphaFold,即使对于同源序列较少的序列,也能实现高精度。在最近的蛋白质结构预测5 (CASP13) 的关键评估中——对该领域状态的盲目评估——AlphaFold 创建了高精度结构(带有模板建模 (TM) 分数43 个免费建模领域中的 24 个获得 0.7 或更高的6个),而使用采样和联系信息的次优方法仅在 43 个领域中的 14 个实现了这样的准确性。AlphaFold 代表了蛋白质结构预测的一个相当大的进步。我们希望这种提高的准确性能够深入了解蛋白质的功能和故障,特别是在没有通过实验确定同源蛋白质结构的情况下7

更新日期:2020-01-15
down
wechat
bug