当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Aedes mosquito detection in its larval stage using deep neural networks
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2019-07-19 , DOI: 10.1016/j.knosys.2019.07.012
Antonio Arista-Jalife; Mariko Nakano; Zaira Garcia-Nonoal; Daniel Robles-Camarillo; Hector Perez-Meana; Heriberto Antonio Arista-Viveros

Dengue, Chikungunya and Zika viruses cause dangerous infections in tropical and subtropical regions throughout the world. The World Health Organization estimates that one out of every three persons in the entire human population is in danger of contracting one of these diseases from a single mosquito bite. Currently, these viral infections are not preventable by vaccines and there is not a direct treatment that can effectively diminish the viral infection, which causes a wide range of pathologies, including severe joint pain, internal blood loss, permanent neurological damage in unborn children and even death. Due to this grim scenario, the best and maybe the only line of defense against these diseases is the effective surveillance, control and suppression of the mosquitoes that transmit these viruses: Aedes aegypti and Aedes albopictus. In this paper, we present a complete solution that is capable of identifying the Aedes aegypti and Aedes albopictus mosquito in the larval stage, which is easily disposable, restricted to water bodies, and incapable of transmitting diseases according to the Centers for Disease Control and Prevention (CDC). Our proposal is based on deep neural networks (DNN) that effectively recognize larval samples with an accuracy of 94.19%, which is better than other state-of-the-art automatic methods. Additionally, the capabilities of our proposed DNN allow us to automatically crop the region of interest (ROI) with an accuracy of 92.85% and then automatically classify the region as Aedes positive or Aedes negative, without further human intervention and in less than a second, accelerating the response time for biological control from days to seconds. Our proposal includes hardware designs that allow inexpensive implementation, making it suitable for isolated communities, underdeveloped countries, and rural or urban areas.
更新日期:2020-01-16

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug