当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Active learning through label error statistical methods
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2019-10-24 , DOI: 10.1016/j.knosys.2019.105140
Min Wang; Ke Fu; Fan Min; Xiuyi Jia

Clustering-based active learning splits data into a number of blocks and queries the labels of the most critical instances. An active learner must decide how to choose these critical instances and how to split the blocks. In this paper, we present theoretical and practical statistical methods for analyzing the relationship between the label error and the neighbor radius, and design new split and selection strategies to handle these two issues. First, we define statistical functions for the label error based on a single instance and instance pairs. Second, we build practical statistical models, calculate empirical label errors, and guide the block splitting process. Third, using these practical models, we develop a center-and-edge instance selection strategy for choosing critical instances. Fourth, we design a new algorithm called active learning through label error statistical methods (ALSE). Learning experiments were performed with 20 datasets from various domains. The results of significance tests verify the effectiveness of ALSE and its superiority over state-of-the-art active learning algorithms.
更新日期:2020-01-16

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug