当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Active learning through label error statistical methods
Knowledge-Based Systems ( IF 5.921 ) Pub Date : 2019-10-24 , DOI: 10.1016/j.knosys.2019.105140
Min Wang; Ke Fu; Fan Min; Xiuyi Jia

Clustering-based active learning splits data into a number of blocks and queries the labels of the most critical instances. An active learner must decide how to choose these critical instances and how to split the blocks. In this paper, we present theoretical and practical statistical methods for analyzing the relationship between the label error and the neighbor radius, and design new split and selection strategies to handle these two issues. First, we define statistical functions for the label error based on a single instance and instance pairs. Second, we build practical statistical models, calculate empirical label errors, and guide the block splitting process. Third, using these practical models, we develop a center-and-edge instance selection strategy for choosing critical instances. Fourth, we design a new algorithm called active learning through label error statistical methods (ALSE). Learning experiments were performed with 20 datasets from various domains. The results of significance tests verify the effectiveness of ALSE and its superiority over state-of-the-art active learning algorithms.

更新日期:2020-01-16

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug