当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Learning target-focusing convolutional regression model for visual object tracking
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-01-16 , DOI: 10.1016/j.knosys.2020.105526
Di Yuan; Nana Fan; Zhenyu He

Discriminative correlation filters (DCFs) have been widely used in the tracking community recently. DCFs-based trackers utilize samples generated by circularly shifting from an image patch to train a ridge regression model, and estimate target location using a response map generated by the correlation filters. However, the generated samples produce some negative effects and the response map is vulnerable to noise interference, which degrades tracking performance. In this paper, to solve the aforementioned drawbacks, we propose a target-focusing convolutional regression (CR) model for visual object tracking tasks (called TFCR). This model uses a target-focusing loss function to alleviate the influence of background noise on the response map of the current tracking image frame, which effectively improves the tracking accuracy. In particular, it can effectively balance the disequilibrium of positive and negative samples by reducing some effects of the negative samples that act on the object appearance model. Extensive experimental results illustrate that our TFCR tracker achieves competitive performance compared with state-of-the-art trackers. The code is available at: https://github.com/deasonyuan/TFCR.
更新日期:2020-01-16

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug