当前位置: X-MOL 学术Ind. Eng. Chem. Res. › 论文详情
Hydrodynamics and Local Turbulent Mixing of Submerged, Parallel Liquid Jets: Experiments and CFD Simulations
Industrial & Engineering Chemistry Research ( IF 3.375 ) Pub Date : 2020-01-28 , DOI: 10.1021/acs.iecr.9b04871
Shuxian Jiang; Jiajun Wang; Lian-Fang Feng; Marc-Olivier Coppens

The hydrodynamics and local turbulent mixing of parallel multiple liquid jets, submerged in liquid, were investigated by means of experiments and computational fluid dynamics (CFD). A renormalization group (RNG) k-ε turbulence model was used to simulate the flow field. The model was validated experimentally by particle image velocimetry (PIV) measurements. In the converging region adjacent to the nozzle exits, the recirculation region disappears, and there is only ambient fluid entrainment. Different jet arrays were compared to evaluate the effects of the jet spatial arrangement on the hydrodynamics and mixing performance. A shorter mixing length in the merging region suggests that mixing is more efficient in the triple-jet system than in other jet systems. Compared with the jet Reynolds number, the jet spacing plays a more significant role in determining the critical mixing regions, while the linear relationship between them is more sensitive than that for multiple parallel plane jets.
更新日期:2020-01-29

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug