当前位置: X-MOL 学术Colloids Surf. B Biointerfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication of morphologically modified strong supramolecular nanocomposite antibacterial hydrogels based on sodium deoxycholate with inverted optical activity and sustained release.
Colloids and Surfaces B: Biointerfaces ( IF 5.8 ) Pub Date : 2020-01-15 , DOI: 10.1016/j.colsurfb.2020.110803
Susmita Biswas 1 , Udita Chatterjee 1 , Sriparnika Sarkar 1 , Finaz Khan 1 , Debbethi Bera 2 , Madhumita Mukhopadhyay 1 , Soumyabrata Goswami 1 , Sandip Chakrabarti 3 , Susmita Das 1
Affiliation  

Low Molecular Weight (LMWG) gelators are small molecules that form supramolecular self-assembly involving physical forces and are highly biocompatible. However, fragility of these physical gels restricts their applicability where gels of higher mechanical strength are required. Herein, we have developed two different types of 2-D carbon nanomaterials viz. graphene oxide (GO) and carbon nanosheet (CNS) embedded sodium deoxycholate (NaDC) hydrogels. XRD, scanning electron microscopy (SEM), rheology and CD studies suggest significant modification of morphological, mechanical, viscoelastic and optical properties of the nanocomposite gels which is ascribed to the presence of the 2D nanotemplates and participation of different surface functionalities of GO and CNS in the gelation process. The overall shear resistance of both the nanocomposite hydrogels upto a shear rate of 300 shears/s-1 and above reveals tremendously improved mechanical stability with respect to the pure gels. The increased shear strength of the GO/NaDC and CNS/NaDC hydrogels is attributed to their 3-4 times broader and longer ribbon like structures in comparison to the fibrous structure of pure gels. The intact ribbon like morphology and greater entanglement impart 10 folds greater viscosity to GO-NaDC hydrogels as compared to better elasticity of CNS-NaDC hydrogels possessing broken ribbon edges. Most interestingly both GO and CNS influence the optical activity of the gels and presence of GO results in inversion of optical activity. The GO-NaDC gels are also found to demonstrate antibacterial activity against E. coli, and S. aureus. Thus, these extraordinarily modified mechanically strong gels have enhanced potential for use in tissue engineering, enantioselective and sustained drug delivery, topical antibiotics and other biomedical applications.

中文翻译:

基于脱氧胆酸钠具有反光活性和持续释放的形态修饰的强力超分子纳米复合抗菌水凝胶的制备。

低分子量(LMWG)胶凝剂是形成超分子自组装的小分子,涉及物理力并且具有高度生物相容性。但是,这些物理凝胶的脆性限制了它们在需要更高机械强度的凝胶中的适用性。在此,我们已经开发出两种不同类型的二维碳纳米材料。氧化石墨烯(GO)和碳纳米片(CNS)嵌入的脱氧胆酸钠(NaDC)水凝胶。XRD,扫描电子显微镜(SEM),流变学和CD研究表明,纳米复合凝胶的形态,机械,粘弹性和光学性质发生了显着变化,这归因于2D纳米模板的存在以及GO和CNS不同表面功能的参与。胶凝过程。两种纳米复合水凝胶的总剪切强度均达到300剪切/ s-1和更高的剪切速率,显示出相对于纯凝胶极大地改善了机械稳定性。GO / NaDC和CNS / NaDC水凝胶的剪切强度提高是由于它们的宽度比纯凝胶的纤维结构宽3-4倍,且带状结构更长。与具有断裂带边缘的CNS-NaDC水凝胶更好的弹性相比,完整的带状形态和更大的缠结赋予GO-NaDC水凝胶更大的10倍的粘度。最有趣的是,GO和CNS都影响凝胶的旋光性,而GO的存在会导致旋光性倒转。还发现GO-NaDC凝胶对大肠杆菌和金黄色葡萄球菌具有抗菌活性。从而,
更新日期:2020-01-15
down
wechat
bug