当前位置: X-MOL 学术Microb. Cell Fact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4.
Microbial Cell Factories ( IF 6.4 ) Pub Date : 2020-01-15 , DOI: 10.1186/s12934-020-1279-6
Hidayat Mohd Yusof 1 , Rosfarizan Mohamad 1 , Uswatun Hasanah Zaidan 2 , Nor'Aini Abdul Rahman 1, 3
Affiliation  

BACKGROUND The use of microorganisms in the biosynthesis of zinc oxide nanoparticles (ZnO NPs) has recently emerged as an alternative to chemical and physical methods due to its low-cost and eco-friendly method. Several lactic acid bacteria (LAB) have developed mechanisms in tolerating Zn2+ through prevention against their toxicity and the production of ZnO NPs. The LAB's main resistance mechanism to Zn2+ is highly depended on the microorganisms' ability to interact with Zn2+ either through biosorption or bioaccumulation processes. Besides the inadequate studies conducted on biosynthesis with the use of zinc-tolerant probiotics, the understanding regarding the mechanism involved in this process is not clear. Therefore, this study determines the features of probiotic LAB strain TA4 related to its resistance to Zn2+. It also attempts to illustrate its potential in creating a sustainable microbial cell nanofactory of ZnO NPs. RESULTS A zinc-tolerant probiotic strain TA4, which was isolated from local fermented food, was selected based on the principal component analysis (PCA) with the highest score of probiotic attributes. Based on the 16S rRNA gene analysis, this strain was identified as Lactobacillus plantarum strain TA4, indicating its high resistance to Zn2+ at a maximum tolerable concentration (MTC) value of 500 mM and its capability of producing ZnO NPs. The UV-visible spectroscopy analysis proved the formations of ZnO NPs through the notable absorption peak at 380 nm. It was also found from the dynamic light scattering (DLS) analysis that the Z-average particle size amounted to 124.2 nm with monodisperse ZnO NPs. Studies on scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy, and Fourier-transform infrared spectroscopy (FT-IR) revealed that the main mechanisms in ZnO NPs biosynthesis were facilitated by the Zn2+ biosorption ability through the functional groups present on the cell surface of strain TA4. CONCLUSIONS The strong ability of zinc-tolerant probiotic of L. plantarum strain TA4 to tolerate high Zn2+ concentration and to produce ZnO NPs highlights the unique properties of these bacteria as a natural microbial cell nanofactory for a more sustainable and eco-friendly practice of ZnO NPs biosynthesis.

中文翻译:

耐锌益生菌植物乳杆菌TA4生产氧化锌纳米颗粒的可持续微生物细胞纳米工厂。

背景技术由于其低成本和生态友好的方法,近来出现了在生物合成氧化锌纳米颗粒(ZnO NP)中使用微生物作为化学和物理方法的替代方法。几种乳酸菌(LAB)通过预防其毒性和ZnO NP的产生,已经开发出耐受Zn2 +的机制。LAB对Zn2 +的主要抗性机制在很大程度上取决于微生物通过生物吸附或生物蓄积过程与Zn2 +相互作用的能力。除了使用耐锌益生菌对生物合成进行的研究不足之外,对于这一过程涉及的机制的理解尚不清楚。因此,本研究确定了益生菌LAB TA4菌株与其对Zn2 +的抗性有关的特征。它还试图说明其在创建可持续的ZnO NPs微生物细胞纳米工厂中的潜力。结果基于主要益生菌属性得分最高的主成分分析(PCA),选择了从当地发酵食品中分离的耐锌益生菌菌株TA4。根据16S rRNA基因分析,该菌株被鉴定为植物乳杆菌TA4菌株,表明其在最大耐受浓度(MTC)值为500 mM时对Zn2 +具有高抗性,并具有生产ZnO NP的能力。紫外可见光谱分析通过在380 nm处的显着吸收峰证明了ZnO NP的形成。从动态光散射(DLS)分析还发现,单分散ZnO NP的Z平均粒径为124.2 nm。扫描电子显微镜(SEM),能量色散X射线(EDX)光谱和傅里叶变换红外光谱(FT-IR)的研究表明,ZnO NPs生物合成的主要机理是通过功能上的Zn2 +生物吸附能力来促进的。在菌株TA4的细胞表面上存在的基团。结论植物乳杆菌TA4的耐锌益生菌具有较强的耐高Zn2 +浓度和产生ZnO NP的能力,突出了这些细菌作为天然微生物细胞纳米工厂的独特特性,可以更可持续和环保地使用ZnO NP。生物合成。傅立叶变换红外光谱(FT-IR)揭示了ZnO NPs生物合成的主要机理是通过菌株TA4的细胞表面上存在的官能团对Zn2 +的生物吸附能力促进的。结论植物乳杆菌TA4的耐锌益生菌具有较强的耐高Zn2 +浓度和产生ZnO NP的能力,突出了这些细菌作为天然微生物细胞纳米工厂的独特特性,可以更可持续和环保地使用ZnO NP。生物合成。傅立叶变换红外光谱(FT-IR)揭示了ZnO NPs生物合成的主要机理是通过菌株TA4的细胞表面上存在的官能团对Zn2 +的生物吸附能力促进的。结论植物乳杆菌TA4的耐锌益生菌具有较强的耐高Zn2 +浓度和产生ZnO NP的能力,突出了这些细菌作为天然微生物细胞纳米工厂的独特特性,可以更可持续和环保地使用ZnO NP。生物合成。
更新日期:2020-01-15
down
wechat
bug