当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Optimal Approximate Sampling from Discrete Probability Distributions
arXiv - CS - Discrete Mathematics Pub Date : 2020-01-13 , DOI: arxiv-2001.04555
Feras A. Saad; Cameron E. Freer; Martin C. Rinard; Vikash K. Mansinghka

This paper addresses a fundamental problem in random variate generation: given access to a random source that emits a stream of independent fair bits, what is the most accurate and entropy-efficient algorithm for sampling from a discrete probability distribution $(p_1, \dots, p_n)$, where the probabilities of the output distribution $(\hat{p}_1, \dots, \hat{p}_n)$ of the sampling algorithm must be specified using at most $k$ bits of precision? We present a theoretical framework for formulating this problem and provide new techniques for finding sampling algorithms that are optimal both statistically (in the sense of sampling accuracy) and information-theoretically (in the sense of entropy consumption). We leverage these results to build a system that, for a broad family of measures of statistical accuracy, delivers a sampling algorithm whose expected entropy usage is minimal among those that induce the same distribution (i.e., is "entropy-optimal") and whose output distribution $(\hat{p}_1, \dots, \hat{p}_n)$ is a closest approximation to the target distribution $(p_1, \dots, p_n)$ among all entropy-optimal sampling algorithms that operate within the specified $k$-bit precision. This optimal approximate sampler is also a closer approximation than any (possibly entropy-suboptimal) sampler that consumes a bounded amount of entropy with the specified precision, a class which includes floating-point implementations of inversion sampling and related methods found in many software libraries. We evaluate the accuracy, entropy consumption, precision requirements, and wall-clock runtime of our optimal approximate sampling algorithms on a broad set of distributions, demonstrating the ways that they are superior to existing approximate samplers and establishing that they often consume significantly fewer resources than are needed by exact samplers.
更新日期:2020-01-15

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug