当前位置: X-MOL 学术Transp Porous Media › 论文详情
Stokesian Dynamics Simulation of Suspension Flow in Porous Media
Transport in Porous Media ( IF 2.376 ) Pub Date : 2019-10-31 , DOI: 10.1007/s11242-019-01354-3
Niloy De; Anugrah Singh

Suspension flow through porous medium was studied using the Stokesian dynamics simulation method. Stokesian dynamics is an efficient tool to carry out numerical simulations for suspension of rigid particles interacting through hydrodynamic and non-hydrodynamic forces. After validating the simulation method for a single particle flowing through an array of fixed grain particles, we have analysed the suspension transport through porous medium. It was observed that the hydrodynamic interactions and the inter-particle non-hydrodynamic forces between the moving and fixed grain particles have a strong influence on the particle trajectories. This was apparent from the change in particle flux with the fractional channel width in the presence of non-hydrodynamic forces. Hydrodynamic interaction between the suspension and grain particles was also studied for large-scale porous system that was generated by a random arrangement of the particles in a periodic cell. It was found that the change in porosity leads to change in the average fluctuation velocity of the suspension. The fluctuation velocity was observed to vary linearly with the particle concentration and average suspension velocity. Finally, a comparative study was performed with suspension flow in a straight channel and it was observed that the shear-induced particle migration in porous medium is altered by the presence of grain particles.
更新日期:2019-10-31

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug