当前位置: X-MOL 学术Transp Porous Media › 论文详情
New General Maximum Entropy Model for Flow Through Porous Media
Transport in Porous Media ( IF 1.997 ) Pub Date : 2019-11-16 , DOI: 10.1007/s11242-019-01362-3
Fábio Cunha Lofrano, Dione Mari Morita, Fernando Akira Kurokawa, Podalyro Amaral de Souza

Abstract New experimental and numerical techniques constitute the major recent advancements in the study of flow through porous media. However, a model that duly links the micro- and macroscales of this phenomenon is still lacking. Therefore, the present work describes a new, analytical model suitable for both Darcian and post-Darcian flow. Unlike its predecessors, most of which are based on empirical assessments or on some derivation of the Navier–Stokes equations, the presented model employed the principle of maximum entropy, along with a reduced number of premises. Nevertheless, it is compatible with classic expressions, such as Darcy’s and Forchheimer’s laws. Also, great adherence to previously published experimental results was observed. Moreover, the developed model allows for the delimitation of Darcian and post-Darcian regimes. It enabled the determination of a probabilistic distribution function of flow velocities within the pore space. Further, it bestowed richer interpretations of the physical meanings of principal flow parameters. Finally, through a new quantity called the entropy parameter, the proposed model may serve as a bridge between experimental and numerical findings both at the micro- and macroscales. Therefore, the present research yielded an analytical, entropy-based model for flow through porous media that is sufficiently general and robust to be applied in several fields of knowledge. Graphic Abstract
更新日期:2020-01-15

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug