当前位置: X-MOL 学术Process Saf. Environ. Prot. › 论文详情
Runaway inhibition of styrene polymerization: A simulation study by chaos divergence theory
Process Safety and Environmental Protection ( IF 4.384 ) Pub Date : 2020-01-14 , DOI: 10.1016/j.psep.2020.01.015
Lei Ni; Jiawei Cui; Juncheng Jiang; Yong Pan; Hao Wu; Chi-Min Shu; Zhirong Wang; Shanjun Mou; Ning Shi

We attempted to prevent the thermal risk of a runaway reaction of polymerization in a batch reactor and to realize online monitoring and emergency inhibition of the thermal runaway behavior. Styrene thermal initiation of bulk polymerization was studied. A full-size model of the styrene polymerization reactor was constructed by referring to the reactor model of the Mettler Toledo automatic calorimeter, which was combined with the kinetic and thermodynamic models of styrene polymerization. The DIV thermal runaway critical criterion based on chaos divergence theory was used to judge the thermal runaway reaction. The critical point of the runaway reaction was determined and used to inhibit the thermal runaway of styrene polymerization by injecting cooling diluents at the liquid surface. The influence of injection rate (vc=0.5、0.8、1m/s), injection position (in-1、in-2、in-3), and amount of cooling diluents (no add、50%、70%、100%) injected on the thermal runaway inhibition of the reaction was investigated and elucidated. The results indicated that a better inhibiting effect can be obtained by injecting the inhibitors at higher rates near the edge of the paddle blade. Moreover, appropriately increasing the injection amount of the inhibitors can achieve better inhibition of the runaway reaction.
更新日期:2020-01-15

 

全部期刊列表>>
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug