当前位置: X-MOL 学术arXiv.cs.LO › 论文详情
Abstracting Probabilistic Models: A Logical Perspective
arXiv - CS - Logic in Computer Science Pub Date : 2018-10-04 , DOI: arxiv-1810.02434
Vaishak Belle

Abstraction is a powerful idea widely used in science, to model, reason and explain the behavior of systems in a more tractable search space, by omitting irrelevant details. While notions of abstraction have matured for deterministic systems, the case for abstracting probabilistic models is not yet fully understood. In this paper, we provide a semantical framework for analyzing such abstractions from first principles. We develop the framework in a general way, allowing for expressive languages, including logic-based ones that admit relational and hierarchical constructs with stochastic primitives. We motivate a definition of consistency between a high-level model and its low-level counterpart, but also treat the case when the high-level model is missing critical information present in the low-level model. We prove properties of abstractions, both at the level of the parameter as well as the structure of the models. We conclude with some observations about how abstractions can be derived automatically.
更新日期:2020-01-14

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug