当前位置: X-MOL 学术arXiv.cs.LO › 论文详情
Succinct Population Protocols for Presburger Arithmetic
arXiv - CS - Logic in Computer Science Pub Date : 2019-10-10 , DOI: arxiv-1910.04600
Michael Blondin; Javier Esparza; Blaise Genest; Martin Helfrich; Stefan Jaax

Angluin et al. proved that population protocols compute exactly the predicates definable in Presburger arithmetic (PA), the first-order theory of addition. As part of this result, they presented a procedure that translates any formula $\varphi$ of quantifier-free PA with remainder predicates (which has the same expressive power as full PA) into a population protocol with $2^{O(\text{poly}(|\varphi|))}$ states that computes $\varphi$. More precisely, the number of states of the protocol is exponential in both the bit length of the largest coefficient in the formula, and the number of nodes of its syntax tree. In this paper, we prove that every formula $\varphi$ of quantifier-free PA with remainder predicates is computable by a leaderless population protocol with $O(\text{poly}(|\varphi|))$ states. Our proof is based on several new constructions, which may be of independent interest. Given a formula $\varphi$ of quantifier-free PA with remainder predicates, a first construction produces a succinct protocol (with $O(|\varphi|^3)$ leaders) that computes $\varphi$; this completes the work initiated in [STACS'18], where we constructed such protocols for a fragment of PA. For large enough inputs, we can get rid of these leaders. If the input is not large enough, then it is small, and we design another construction producing a succinct protocol with one leader that computes $\varphi$. Our last construction gets rid of this leader for small inputs.
更新日期:2020-01-14

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug